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Abstract

Hrubeš and Wigderson [HW15] initiated the complexity-theoretic study of noncommutative

formulas with inverse gates. They introduced the Rational Identity Testing (RIT) problem

which is to decide whether a noncommutative rational formula computes zero in the free skew

field. In the white-box setting, there are deterministic polynomial-time algorithms due to Garg,

Gurvits, Oliveira, and Wigderson [GGdOW16] and Ivanyos, Qiao, and Subrahmanyam [IQS18].

A central open problem in this area is to design an efficient deterministic black-box identity

testing algorithm for rational formulas. In this paper, we solve this for the first nested inverse

case. More precisely, we obtain a deterministic quasipolynomial-time black-box RIT algorithm

for noncommutative rational formulas of inversion height two via a hitting set construction.

Several new technical ideas are involved in the hitting set construction, including concepts from

matrix coefficient realization theory [Vol18] and properties of cyclic division algebras [Lam01].

En route to the proof, an important step is to embed the hitting set of Forbes and Shpilka for

noncommutative formulas [FS13] inside a cyclic division algebra of small index.
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1 Introduction

The broad goal of algebraic complexity is to study the complexity of computing polynomials and ra-

tional functions using basic arithmetic operations: additions, multiplications, and inverses. Arith-

metic circuits and arithmetic formulas are two extensively studied models of computation. An

important sub-area of algebraic complexity is noncommutative computation: the set of monomials

over variables X is the free monoid X∗ of all words. In particular, variables in X do not commute

(i.e. xy 6= yx). If we allow only the addition and multiplication gates in the noncommutative

formulas/circuits, they compute noncommutative polynomials (similar to the commutative case)

in the free algebra.

In the commutative case, the role of inverses is well understood, but in the noncommutative

world it is quite subtle. To elaborate, it is known that any commutative rational expression

can be expressed as fg−1 where f and g are two commutative polynomials [Str73]. However,

noncommutative rational expressions (formulas with inverses) such as x−1 + y−1 or xy−1x cannot

be represented as fg−1 or f−1g. If we have nested inverses, it makes the rational expression more

complicated, for example (z + xy−1x)
−1 − z−1. Moreover, a noncommutative rational expression

is not always defined on a matrix substitution. For a noncommutative rational expression r, its

domain of definition is the set of matrix tuples (of any dimension) where r is defined. We denote it

by dom(r). Two rational expressions r1 and r2 are equivalent if they agree on dom(r1) ∩ dom(r2).

This induces an equivalence relation on the set of all noncommutative rational expressions (with

nonempty domain of definition). It was used by Amitsur in his characterization of the universal

free skew field [Ami66] and the equivalence classes are called noncommutative rational functions.

The inversion height of a rational formula is the maximum number of inverse gates in a path

from an input gate to the output gate. It is known [HW15] that the inversion height of a rational

formula of size s is bounded by O(log s). Hrubeš and Wigderson [HW15] consider the rational

identity testing problem (RIT) of testing the equivalence of two rational formulas. It is the same

as testing whether a rational formula computes the zero function in the free skew field. In other

words, decide whether there exists a matrix tuple (of any dimension) such that the rational formula

evaluates to nonzero on that substitution. Rational expressions exhibit peculiar properties which

seem to make the RIT problem quite different from polynomial identity testing. For example,

Bergman has constructed an explicit rational expression, of inversion height two, which is an

identity for 3 × 3 matrices but not an identity for 2 × 2 matrices [Ber76]. Also, the apparent

lack of canonical representations, like a sum of monomials representation for polynomials, and

the use of nested inverses in noncommutative rational expressions complicate the problem. For

example, the rational expression (x + xy−1x)−1 + (x + y)−1 − x−1 of inversion height two is a

rational identity, known as Hua’s identity [Hua49].

However, Hrubeš and Wigderson give an efficient reduction from the RIT problem to the

singularity testing problem of linear pencils. A linear pencil L of size s over noncommuting

variables
¯
x = {x1, . . . , xn} is a s × s matrix whose entries are linear forms in

¯
x variables, i.e.

L = A0 +
∑n

i=1Aixi, where each Ai is an s × s matrix over the field F. A rational function r in

F⦓
¯
x⦔ has a linear pencil representation L of size s, if for some i, j ∈ [s], r = (L−1)i,j . In particular,

if r is a rational formula of size s, Hrubeš and Wigderson have shown that r has a linear pencil

representation L of size at most 2s such that r is defined on a matrix tuple if and only if L is in-

vertible on that tuple [HW15]. Using this connection, they reduce the RIT problem to the problem

of testing whether a given linear pencil is invertible over the free skew field in deterministic poly-
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nomial time. The latter is the noncommutative SINGULAR problem, whose commutative analog

is the symbolic determinant identity testing problem. The deterministic complexity of symbolic

determinant identity testing is completely open [KI04] in the commutative setting. In contrast, the

SINGULAR problem in noncommutative setting has deterministic polynomial-time algorithms in

the white-box model due to [GGdOW16, IQS18]. The algorithm in [GGdOW16] is based on opera-

tor scaling and the algorithm in [IQS18] is based on the second Wong sequence and a constructive

version of regularity lemma. As a consequence, a deterministic polynomial-time white-box RIT

algorithm follows.

A central open problem is to design an efficient deterministic RIT algorithm in the black-box

case [GGdOW16]. There is a randomized polynomial-time black-box algorithm for the problem

[DM17]. Can we derandomize this result even in some restricted settings, for example when the

inversion height of the input rational formula is small? Notice that inversion height zero rational

formulas are just noncommutative formulas, and a result of Forbes and Shpilka have shown a

deterministic quasipolynomial-time identity testing for those (more generally, for noncommutative

ABPs) via a hitting set construction [FS13]. Whether their approach can be extended to the RIT

problem for rational formulas is a natural direction and we prove the following theorem which is

our main result.

Theorem 1. For the class of rational formulas in Q⦓x1, . . . , xn⦔ of inversion height two and

size at most s, we can construct a hitting set H ⊆ Mn
d (Q) of size (ns)O(logns) in deterministic

(ns)O(logns)-time. The parameter d is poly(s, n) bounded.

Before this work, no such hitting set construction was known that could handle nested inverses.

As we discuss in the next section, even to derandomize RIT for the special case of inversion height

two, we need to accumulate several ideas involving cyclic division algebras [Lam01] and matrix

coefficient realization theory [Vol18] combined with the hitting set construction in [FS13].

Proof Idea

Consider the following noncommutative rational formula, r = [x, y]−1 = (xy− yx)−1. Clearly there

is no point in dom(r) from the ground field, and the natural idea is to expand the series around

a matrix point. Let (p1, p2) be a matrix pair such that [p1, p2] is invertible and let r(p1, p2) =

[p1, p2]
−1 = q. Then,

r(x+ p1, y + p2) = ([p1, p2]− [p2, x]− [y, p1]− [y, x])−1 .

Simplifying this we can write r(x+ p1, y+ p2) = (I− g(x, y))−1q where g(x, y) = q([p2, x] + [y, p1] +

[y, x]). Now expanding this using (I − g(x, y))−1 =
∑

i>0(g(x, y))i, we can see that every term

in the expansion looks like a0z1a1z2 . . . ad−1zdad where each aj is a matrix and zj ∈ {x, y}. In

the language of matrix coefficient realization theory [Vol18], such terms (resp. series) are called

generalized words or monomials (resp. generalized series). In fact if a rational formula r of size s has

a defined point
¯
u in some dimension l (in other words

¯
u ∈ dom(r), and we use it interchangeably),

Volčič shows that one can associate a special class of generalized series, a recognizable generalized

series to the shifted rational formula [Vol18]:

r(
¯
x+

¯
u) = c

I2ls − n∑
j=1

Axj

−1 b.
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Here c ∈ (Ml(F))1×2s and b ∈ (Ml(F))2s×1. The matrices Axj , 1 6 j 6 n are of dimension 2s× 2s

as a block matrix and (k1, k2)
th entry of Axj is given by a generalized linear form Ck1,k2,jxjC

′
k1,k2,j

where Ck1,k2,j , C
′
k1,k2,j

∈Ml(F).

Focusing on our problem for rational formulas of inversion height two, the first step is to

construct a quasipolynomial-size set H1 of matrix tuples of small dimension such that for every

nonzero rational formula r of inversion height two, there exists a point
¯
u ∈ H1 on which r is defined.

Given such a point, testing whether r is zero or not reduces to testing whether the generalized series

r(
¯
x+

¯
u) is zero or not. This is formally stated in Theorem 10. For a recognizable series in algebraic

automata theory, a standard result by Schützenberger shows that the identity testing of such infinite

series is equivalent to the identity testing of polynomial obtained by truncation of the series up

to a small degree [Eil74, Corollary 8.3]. We can adapt this result in the case of generalized series

too and observe that the truncated generalized polynomial (of small degree d) can be represented

by an algebraic branching program with edge labels are linear forms over matrices. Such ABPs

can be identity tested efficiently using an adaptation of the hitting set construction shown by

Forbes-Shpilka [FS13].

Although it is not clear how to carry out the truncation in the black-box setting, we can show

that a suitable scaling of the hitting set for such generalized ABPs is good enough to hit the

generalized series too. To fit the dimension correctly, throughout the computation the coefficient

matrices should be embedded in the matrix algebra of dimension dl using the inclusion map ι : a→
a⊗ Id. This is shown in Proposition 26.

Clearly, r is defined at a point
¯
u if and only if all the maximal sub-formulas of inversion height

one in r evaluate to invertible matrices on
¯
u. One can consider the product of all such maximal

formulas and thus our goal is now re-defined: construct H1 such that for every size-s rational

formula r of inversion height one, there is a point
¯
u ∈ H1 at which r(

¯
u) is invertible. We call such

a hitting set a strong hitting set. We give the formal definition.

Definition 2 (Strong hitting set). For a class of rational functions (resp. polynomials) a hitting

set H is strong if any nonzero rational function (resp. polynomial) in that class evaluates to an

invertible matrix at some point in H.

A rational formula r of inversion height one is defined at a point
¯
v if and only if all sub-formulas

which are input to inverse gates evaluate to invertible matrices on
¯
v. These sub-formulas are

just noncommutative formulas. Since the Forbes-Shpilka hitting set [FS13] for noncommutative

formulas consists of tuples of nilpotent matrices, it is not directly applicable to our problem.

However, it is possible to adapt their construction and get a strong hitting set, also of quasipoly-

nomial size, such that every size-s nonzero noncommutative formula evaluates to an invertible ma-

trix on some matrix tuple in the strong hitting set 1. In particular, all matrices in the hitting set

construction will be invertible and have the following shape:
0 ∗ 0 · · · 0

0 0 ∗ · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 ∗
∗ 0 · · · 0 0

 ,
1This was first explicitly constructed in [ACDM20].
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where the dimension is determined by the depth of the noncommutative formulas. Expanding r

around such a point would again lead to a generalized series, and (a somewhat more involved)

truncation and scaling argument show that we can get a strong hitting set for r by constructing

a strong hitting set for generalized ABPs whose edges are labeled by linear forms over matrices.

This is the essence of the second part of Proposition 26.

At this point, we face a serious obstacle. How do we find invertible matrices in the image of the

generalized ABPs? In other words, how to construct a strong hitting set for generalized ABPs? The

main insight is that, if the matrices present in the linear forms of the generalized ABPs are from

a division algebra, then one can construct a strong hitting set from a hitting set. To implement

this, we construct the hitting set for noncommutative formulas (which are of inversion height zero)

over a division algebra of small index and expand the rational formula with respect to the points

in that hitting set. Why does it work? Roughly speaking, as already mentioned it is easier to find

a nonzero in the image of generalized ABPs and if the computation occurs in a division algebra

then a computed nonzero element is also invertible.

Section 4 elaborates on this idea. In particular, Lemma 20 provides an existential argument

showing that if the linear forms of the generalized ABP are defined over a division algebra of

dimension `, then there exists a substitution to the variables from D such that the generalized

ABP evaluates to an invertible matrix. The proof uses two ideas. Firstly, we show that such a

point exists in the full matrix algebra of dimension `. Then we use Proposition 15 to find such

a certificate in D. Once we establish the existential argument, we can use a reduction to the

hitting set construction of ROABPs (in unknown order) [AGKS15] to construct the hitting set in

quasi-polynomial time. To work out the technical details we need to employ the inclusion map

ι′ : a → Id ⊗ a for the coefficients which are now elements of division algebra. In ring theory the

maps ι and ι′ are compatible: by the Skolem-Noether theorem [Row80, Theorem 3.1.2] there is an

invertible matrix q0 such that q0(Id ⊗ a)q−10 = a ⊗ Id for all a. However, in our case, we give a

simple explicit construction of a permutation matrix q0.

In the remaining part of the proof sketch, we informally describe how to find a hitting set

for noncommutative formulas (more generally for noncommutative ABPs) in a division algebra

of a small index. For simplicity, suppose the ABP degree is 2d. The Forbes-Shpilka hitting set

[FS13] has a recursive construction and it is by a reduction to the hitting set construction for

ROABPs (read-once algebraic branching programs) over the commutative variables u1, u2, . . . , u2d .

The recursive step in the construction is by combining hitting sets (via hitting set generator Gd−1)
for two halves of degree 2d−1 [FS13] with a rank preserving step of matrix products to obtain the

generator Gd at the dth step. More precisely, Gd is a map from Fd+1 → F2d that stretches the seed

(α1, . . . , αd+1) to a 2d tuple for the read-once variables.

For our purpose, we take a classical construction of cyclic division algebras [Lam01, Chapter

5]. The division algebra D = (K/F, σ, z) is defined using a indeterminate x as the `-dimensional

vector space:

D = K ⊕Kx⊕ · · · ⊕Kx`−1,

where the (noncommutative) multiplication for D is defined by x` = z and xb = σ(b)x for all

b ∈ K. Here σ : K → K is an automorphism of the Galois group Gal(K/F ). The field F = Q(z)

and K = F (ω), where z is an indeterminate and ω is an `th primitive root of unity. The matrix
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representation of a general element in D is of the following form:
0 b 0 · · · 0

0 0 σ(b) · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 σ`−2(b)

zσ`−1(b) 0 · · · 0 0

 .

To embed the hitting set of [FS13], we need to choose ` = 2L appropriately larger than 2d. As

it turns out the construction of the division algebra requires a tower of extension fields of F , with

a higher-order root of unity at each stage.

Specifically, let ωi = ω2ai for a1 > a2 > · · · > ad > 0, where ai are positive integers suitably

chosen. Let Ki = F (ωi) be the cyclic Galois extension for 1 6 i 6 d giving a tower of extension

fields

F ⊂ F (ω1) ⊂ F (ω2) ⊂ · · · ⊂ F (ωd) ⊂ F (ω).

As we show in Section 3 that we require two properties of ωi, 1 6 i 6 d. Firstly, for the hitting

set generator Gi we will choose the root of unity as ωi and the variable αi will take values only in

the set Wi = {ωji | 1 6 j 6 2L−ai}. We also require that the K-automorphism σ has the property

that for all 1 6 i 6 d the map σ2
i

fixes ωi. In fact we will ensure that σ2
i

has F (ωi) as its fixed

field. The construction of D satisfying the above properties is the main technical step in Section 3.

Implementing all these steps we get a quasipolynomial-size hitting set over Q(ω, z). Then

we show how to transfer the hitting set over Q itself by a relatively standard idea that treats the

parameters ω and z as fresh indeterminates t1, t2 and vary them over a suitably chosen polynomial-

size set. This is sketched in Section 5.

We include a brief discussion in Section 6 about possibly extending our approach to any constant

inversion height formula.

Organization

In Section 2, we collect some background results from algebraic complexity theory, matrix coefficient

realization theory, and cyclic division algebra. Section 3 contains the proof that the Forbes-Shpilka

hitting set can be embedded in a cyclic division algebra of small index. In Section 4, we construct

a quasipolynomial-size strong hitting set for generalized ABPs over division algebra. Finally, in

Section 5 we combine the results developed in Section 3 and Section 4 to obtain our main result

which gives a quasipolynomial-size hitting set for rational formulas of inversion height two. In

Section 6, we mainly discuss the possibility of extending our method to higher inversion heights.

2 Background and Notation

Throughout the paper, we use F, F,K for fields. The notation Mm(F) (respectively, Mm(F ),

Mm(K)) are used for m dimensional matrix algebra over F (respectively over F,K) where m

is clear from the context. D is used to denote cyclic division algebras. Let
¯
x be the set of variables

{x1, . . . , xn}. Sometime we use notation like
¯
u,

¯
v,

¯
p,

¯
q to denote the matrix tuples in suitable matrix

algebras. The free noncommutative ring of polynomials over a field F is denoted by F〈
¯
x〉. The
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ring of formal power series is denoted by F⟪
¯
x⟫. For a series (or polynomial) S, the coefficient of a

monomial (word) in S is denoted by [m]S.

2.1 Algebraic Complexity

Definition 3 (Algebraic Branching Program). An algebraic branching program (ABP) is a layered

directed acyclic graph. The vertex set is partitioned into layers 0, 1, . . . , d, with directed edges only

between adjacent layers (i to i+ 1). There is a source vertex of in-degree 0 in the layer 0, and one

out-degree 0 sink vertex in layer d. Each edge is labeled by an affine F-linear form. The polynomial

computed by the ABP is the sum over all source-to-sink directed paths of the ordered product of

affine forms labeling the path edges.

The size of the ABP is defined as the total number of nodes and the width is the maximum num-

ber of nodes in a layer. The ABP model is defined for computing commutative or noncommutative

polynomials. ABPs of width r can also be seen as iterated matrix multiplication c ·M1M2 · · ·M` ·b,

where c, b are 1× r and r× 1 vectors respectively and each Mi is a r× r matrix, whose entries are

affine linear forms over
¯
x.

We also consider commutative set-multilinear ABPs and read-once oblivious ABPs (ROABPs).

For the set-multilinear case, the (commutative) variable set is partitioned as Y = Y1 t Y2 t · · · t Yd
where for each j ∈ [d], Yj = {yij}ni=1. An ABP B is homogeneous set-multilinear if each edge in

the jth layer of the ABP is labelled by linear forms over Yj . For ROABP, a different variable is

used for each layer, and the edge labels are univariate polynomials. Therefore, an ROABP of d

layers can be represented as c ·M1(v1)M2(v2) · · ·Mvd(d) · b. We say that the ROABP respects the

variable order v1 < v2 < · · · < vd.

Identity testing results

We say a set H ⊆ Fn is a hitting set for a circuit class C if for every n-variate polynomial f in C,
f 6≡ 0 if and only if f(

¯
a) 6= 0 for some

¯
a ∈ H. For the class of ROABPs, Forbes and Shpilka [FS13]

obtained the first quasipolynomial-time black-box algorithm by constructing a hitting set of the

same size.

Theorem 4. For the class of polynomials computable by a width r, depth D, individual degree < n

ROABPs of knwon order, if |F| > (2Dnr3)2, there is a poly(D,n, r)-explicit hitting set of size at

most (2Dn2r4)dlogD+1e.

Indeed, they proved something more general.

Definition 5 (Hitting Set Generator). A polynomial map G : Ft → Fn is a generator for a circuit

class C if for every n-variate polynomial f in C, f ≡ 0 if and only if f ◦ G ≡ 0.

Theorem 6. [FS13, Construction 3.13, Lemma 3.21] For the class of polynomials computable by

a width r, depth D, individual degree < n ROABPs of known order, one can construct a hitting set

generator G : FdlogD+1e → FD of degree Dnr4 efficiently.

The hitting set is defined as H ⊆Mn
d (F) for any class of noncommutative polynomials. For the

black-box case, Forbes and Shpilka [FS13], have shown an efficient construction of quasipolynomial-

size hitting set for noncommutative ABPs. Consider the class of noncommutative ABPs of width
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w, and depth d computing polynomials in F〈X〉. The result of Forbes and Shpilka provide an

explicit construction (in quasipolynomial-time) of a set Hw,d,n contained in Md+1(F), such that

for any ABP (with parameters w and d) computing a nonzero polynomial f , there always exists

(p1, . . . , pn) ∈ Hw,d,n such that f(
¯
p) 6= 0.

Theorem 7 (Forbes and Shpilka [FS13]). For all w, d, n ∈ N, if |F| > poly(d, n, w), then there is a

hitting set Hw,d,n ⊂Md+1(F) for noncommutative ABPs of parameters w, d, n such that |Hw,d,n |6
(wdn)O(log d) and there is a deterministic algorithm to output the set Hw,d,n in time (wdn)O(log d).

Recognizable series

A comprehensive treatment is in the book by Berstel and Reutenauer [BR11]. We will require the

following concepts. Recall that F⟪
¯
x⟫ is the formal power series ring over a field F. A series S in F⟪

¯
x⟫

is recognizable if it has the following linear representation: for some integer s, there exists a row

vector
¯
c ∈ F1×s, a column vector

¯
b ∈ Fs×1 and an s× s matrix M whose entries are homogeneous

linear forms over x1, . . . , xn i.e.
∑n

i=1 αixi such that S =
¯
c
(∑

k>0M
k
)
¯
b. Equivalently, S =

¯
c(I −M)−1

¯
b. We say, S has a representation (

¯
c,M,

¯
b) of size s.

The following theorem is a basic result in algebraic automata theory.

Theorem 8. A recognizable series with representation (
¯
c,M,

¯
b) of size s is nonzero if and only if

¯
c
(∑

k6s−1M
k
)
¯
b is nonzero.

It has a simple linear algebraic proof [Eil74, Corollary 8.3, Page 145 ]. This result is generally

attributed to Schützenberger. For this paper, the theorem is used to apply that the truncated series

is computable by a small noncommutative ABP, therefore, reducing zero-testing of recognizable

series to the identity testing of noncommutative ABPs.

2.2 Matrix Coefficient Realization Theory

We require some basic notions and results about generalized automata and generalized recognizable

series from Volčič’s article [Vol18]. A detailed exposition is given in it [Vol18].

A generalized word or a generalized monomial in x1, . . . , xn over the matrix algebra Mm(F)

allows the matrices to interleave between variables. That is to say, a generalized monomial is of the

form: a0xk1a2 · · · ad−1xkdad, where ai ∈Mm(F), and its degree is the number of variables d occurring

in it. A finite sum of generalized monomials is a generalized polynomial in the ring Mm(F)〈
¯
x〉. A

generalized formal power series over Mm(F) is an infinite sum of generalized monomials such that

the sum has finitely many generalized monomials of degree d for any d ∈ N. The ring of generalized

series over Mm(F) is denoted Mm(F)⟪
¯
x⟫.

A generalized series (resp. polynomial) S over Mm(F) admits the following canonical descrip-

tion. Let E = {ei,j , 1 6 i, j 6 m} be the set of elementary matrices. Express each coefficient

matrix a in S in the E basis by a F-linear combination and then expand S. Naturally each mono-

mial of degree-d in the expansion looks like ei0,j0xk1ei1,j1xk2 · · · eid−1,jd−1
xkdeid,jd where eil,jl ∈ E

and xkl ∈ ¯
x. We say the series S (resp. polynomial) is identically zero if and only if it is zero under

such expansion i.e. the coefficient associated with each generalized monomial is zero.

The evaluation of a generalized series over Mm(F) is defined on any k′m× k′m matrix algebra

for some integer k′ > 1 [Vol18]. To match the dimension of the coefficient matrices with the matrix
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substitution, we use an inclusion map ι : Mm(F) → Mk′m(F), for example, ι can be defined as

ι(a) = a⊗ Ik′ or ι(a) = Ik′ ⊗ a. Now, a generalized monomial a0xk1a1 · · · ad−1xkdad over Mm(F) on

matrix substitution (p1, . . . , pn) ∈Mn
k′m(F) evaluates to

ι(a0)pk1ι(a1) · · · ι(ad−1)pkdι(ad)

under some inclusion map ι : Mm(F) → Mk′m(F). All such inclusion maps are known to be

compatible by the Skolem-Noether theorem [Row80, Theorem 3.1.2]. Therefore, if a series S is zero

with respect to some inclusion map ι : Mm(F)→Mk′m(F), then it is zero w.r.t. any such inclusion

map.

The two notions of zeroness are equivalent [Vol18, Proposition 3.13].

Definition 9. [Vol18] A generalized series S in Mm(F)⟪
¯
x⟫ is said to be recognizable if it has

the following linear representation. For some integer s, there exists a row-tuple of matrices c ∈
(Mm(F))1×s, and b ∈ (Mm(F))s×1 and an s×s matrix M whose entries are homogeneous generalized

linear forms over x1, . . . , xn i.e.
∑n

i=1 p̃ixip̂i where each p̃i, p̂i ∈Mm(F) such that S = c(I−M)−1b.

We say, S has a linear representation (c,M, b) of size s over Mm(F).

The linear representation is said to be over a subalgebra A ⊆Mm(F) if c ∈ A1×s, and b ∈ As×1

and each p̃i, p̂i ∈ A.

Theorem 10. [Vol18, Corollary 5.1, Proposition 3.13]

1. Given a noncommutative rational formula r of size s over x1, . . . , xn and a matrix tuple

¯
p ∈Mn

m(F) in the domain of definition of r, r(
¯
x+

¯
p) is a recognizable generalized series with

a representation of size at most 2s over Mm(F). Moreover, if A ⊆ Mm(F) is the subalgebra

generated by the matrices p1, . . . , pn then r(
¯
x +

¯
p) has, in fact, a linear representation over

the subalgebra A.

2. Additionally, r(
¯
x) is zero in the free skew field if and only if r(

¯
x+

¯
p) is zero as a generalized

series.

Proof. For the first part, see Corollary 5.1 and Remark 5.2 of [Vol18].

To see the second part, suppose r(
¯
x) is zero in the free skew field. Then the fact that r(

¯
x+

¯
p)

is a zero series follows from [Vol18, Proposition 3.13]. If r(
¯
x) is nonzero in the free skew field,

then there exists a matrix tuple (q1, . . . , qn) ∈ Mn
l (F) such that r(

¯
q) is nonzero. W.l.o.g. we can

assume l = k′m for some integer k′. Fix an inclusion map ι : Mm(F)→ Mk′m(F). Define a matrix

tuple (q′1, . . . , q
′
n) ∈Mn

k′m(F) such that q′i = qi − ι(pi). Therefore, the series r(
¯
x+

¯
p) on (q′1, . . . , q

′
n)

evaluates to r(
¯
q), under the inclusion map ι, which is nonzero [Vol18, Remark 5.2]. Therefore,

r(
¯
x+

¯
p) is nonzero.

Remark 11. Moreover we have the following [Vol18, Section 5]. Let r(
¯
x) be a rational formula of

size s and
¯
p ∈Mn

m(F) be in the domain of definition of r. Then r(
¯
x+

¯
p) has a linear representation

(c,M, b) of size 2s over Mm(F). Then M is a 2s× 2s matrix with entries of the form
∑n

i=1 p̃ixip̂i,

p̃i, p̂i ∈ Mm(F). For an inclusion map ι : Mm(F) → Mk′m(F) and a matrix tuple
¯
q ∈ Mn

k′m(F),

replacing each
∑n

i=1 p̃ixip̂i by
∑n

i=1 ι(p̃i)qiι(p̂i), we obtain a 2sk′m× 2sk′m matrix ι(M)(
¯
q). Then,

r(
¯
q + ι(

¯
p)) = ι(c)

(
I2sk′m − ι(M)(

¯
q)
)−1

ι(b),

where ι(c) and ι(b) are an k′m×k′ms and an k′ms×k′m matrix respectively obtained by applying

ι on every m×m blocks of c and b.
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2.3 Cyclic Division Algebras

A division algebra D is an associative algebra over a (commutative) field F such that all nonzero

elements in D are units (they have a multiplicative inverse). In the context of this paper, we are

interested in finite-dimensional division algebras. Specifically, we focus on cyclic division algebras

and their construction [Lam01, Chapter 5]. Let F = Q(z), where z is a commuting indeterminate.

Let ω be an `th primitive root of unity. To be specific, let ω = e2πi/`. Let K = F (ω) = Q(ω, z) be

the cyclic Galois extension of F obtained by adjoining ω. The elements of K are polynomials in ω

(of degree at most `− 1) with coefficients from F .

Define σ : K → K by letting σ(ω) = ωk for some k relatively prime to ` and stipulating that

σ(a) = a for all a ∈ F . Then σ is an automorphism of K with F as fixed field and it generates the

Galois group Gal(K/F ).

The division algebraD = (K/F, σ, z) is defined using a new indeterminate x as the `-dimensional

vector space:

D = K ⊕Kx⊕ · · · ⊕Kx`−1,

where the (noncommutative) multiplication for D is defined by x` = z and xb = σ(b)x for all

b ∈ K. Then D is a division algebra of dimension `2 over F [Lam01, Theorem 14.9]. The index of

D is defined to be the square root of the dimension of D over F . In our example, D is of index

`. Its elements have matrix representations in K`×` (the regular matrix representation defined by

multiplication from the left) given below:

The matrix representation M(x) of x is:

M(x)[i, j] =


1 if j = i+ 1, i 6 `− 1

z if i = `, j = 1

0 otherwise.

M(x) =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1

z 0 · · · 0 0

 .

For each b ∈ K its matrix representation M(b) is:

M(b)[i, j] =


b if i = j = 1

σi−1(b) if i = j, i > 2

0 otherwise.

M(b) =



b 0 0 0 0 0

0 σ(b) 0 0 0 0

0 0 σ2(b) 0 0 0

0 0 0
. . . 0 0

0 0 0 0 σ`−2(b) 0

0 0 0 0 0 σ`−1(b)
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Remark 12. We note that M(x) has a “circulant” matrix structure and M(b) is a diagonal

matrix. For a vector v ∈ K`, it is convenient to write circ(v1, v2, . . . , v`) for the ` × ` matrix with

(i, i + 1)th entry vi for i 6 ` − 1, (`, 1)th entry as v` and remaining entries zero. Thus, we have

M(x) = circ(1, 1, . . . , 1, z). Similarly, we write diag(v1, v2, . . . , v`) for the diagonal matrix with

entries vi.

Fact 13. The F -algebra generated by M(x) and M(b), b ∈ K is an isomorphic copy of the cyclic

division algebra in the matrix algebra M`(K).

Proposition 14. For all b ∈ K, circ(b, σ(b), . . . , zσ`−1(b)) = M(b) ·M(x).

Define Ci,j = M(ωj−1) ·M(xi−1) for 1 6 i, j 6 `. Observe that, B = {Cij , i, j ∈ [`]} be a

F -generating set for the division algebra D.

A standard fact is the following.

Proposition 15. [Lam01, Section 14(14.13)] Then K linear span of B is the entire matrix algebra

M`(K).

3 Embedding Forbes-Shpilka Hitting Set in a Division Algebra

Given any noncommutative algebraic branching program of size s computing a polynomial

h ∈ F〈x1, . . . , xn〉 of degree d̃, the hitting set H contains a matrix tuple (p1, . . . , pn) such that

h(p1, . . . , pn) is nonzero. Forbes and Shpilka [FS13] have shown a quasipolynomial-size hitting set

construction contained in Mn
d̃+1

(F). For ABPs over Q, we will show the construction of a hitting

set H which is contained in Dn such that D is a cyclic division algebra of index ` where ` is suitably

chosen depending on n, d̃ and s.

Before we present our construction, we recall the matrix substitutions from the Forbes-Shpilka

hitting set construction. Their idea is to reduce PIT for noncommutative ABPs to PIT for com-

mutative read-once oblivious ABP (ROABP) and to design a hitting set generator for the latter.

Without loss of generality, we can assume that the given ABP is a d̃-product of r × r matri-

ces M = A1 · A2 · · ·Ad̃, where the entries of each matrix Ai are homogeneous linear forms in

x1, x2, . . . , xn. The matrix Ai corresponds to the ith of the ABP. The polynomial f in F〈x1, . . . , xn〉
that the ABP computes is of degree d̃ = 2d, and f is an entry of this matrix product M .

We can write Aj =
∑n

i=1Aijxi, 1 6 j 6 d̃, where Aij ∈ Fr×r. The entries Mij of the matrix M

are homogeneous polynomials in F〈
¯
x〉. The polynomial f is computed at some entry of M as the

output polynomial. Let {u1, . . . , ud̃} be distinct commuting indeterminates. In [FS13], the authors

make the following (d̃+ 1)× (d̃+ 1) matrix substitution for each xi, where the variable index i is

encoded as the exponent of the commuting variables:

M(xi) =


0 ui1 0 · · · 0

0 0 ui2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 ui
d̃

0 0 · · · 0 0

 .

Evaluating the ABP for f on this matrix substitution xi ← M(xi) produces a (d̃ + 1) × (d̃ + 1)
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matrix whose (1, d̃ + 1)th entry is an ROABP as it effectively replaces each xi variable at layer j

by uij . Therefore, the index j of uj encodes the layer of the noncommutative ABP.

The black-box PIT algorithm then follows from the construction of a hitting set generator for

commutative ROABPs:

Gd : (α1, α2, . . . , αd, αd+1) 7→ (f0(α1, . . . , αd, αd+1), f1(α1, . . . , αd, αd+1), . . . , f2d−1(α1, . . . , αd, αd+1)),

where each fi is a polynomial of degree poly(2d, r, n). The actual points of the hitting set are

obtained by choosing values for each variable αi from a subset of scalars U ⊆ F of poly(2d, r, n)

size. This makes the size of the hitting set quasipolynomial. The final substitution for each xi
variable in the noncommutative ABP is the following:

M(xi) =


0 f i0(α1, . . . , αd+1) 0 · · · 0

0 0 f i1(α1, . . . , αd+1) · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 f i
2d−1(α1, . . . , αd+1)

0 0 · · · 0 0

 . (1)

Therefore, one approach to embedding the matrix substitutions in a cyclic division algebra

D = (K/F, σ, z) (where F = Q(z)) of index ` (where ` is the index of D which is larger than 2d

that we fix later) would be to find a hitting set generator

Gd : (α1, α2, . . . , αd, αd+1) 7→ (f0(α1, . . . , αd, αd+1), f2(α1, . . . , αd, αd+1), . . . , f2d−1(α1, . . . , αd, αd+1)),

with the following additional property: fi+1(α1, . . . , αd+1) = σ(fi(α1, . . . , αd+1)) for each 0 6 i 6
`− 2. In that case, consider the following `× ` matrix substitutions:

M(xi) =



0 f i0(¯
α) 0 · · · 0 0 · · · 0

0 0 f i1(¯
α) · · · 0 0 · · · 0

...
...

. . .
. . .

...
...

. . .
...

0 0 0 · · · f i
d̃−1(¯

α) 0 · · · 0

0 0 0 · · · 0 f i
d̃
(
¯
α) · · · 0

...
...

. . .
. . .

...
...

. . .
...

0 0 0 · · · 0 0 · · · f i`−2(¯
α)

zf i`−1(¯
α) 0 0 · · · 0 0 · · · 0


.

Notice that the top-left (d̃ + 1) × (d̃ + 1) submatrix of this substitution is exactly the sub-

stitution described in Equation 1. Therefore, evaluating a degree-d̃ noncommutative ABP B over

{x1, . . . , xn} on these matrices will output the evaluation of corresponding ROABP in the (1, d̃+1)th

entry as in [FS13]. Moreover, by Proposition 14, we can ensure that each M(xi) is in the cyclic

division algebra D assuming that each fi(
¯
α) ∈ K. Therefore, the output will also be in the division

algebra D only. To conclude, for a nonzero noncommutative ABP, the image will be nonzero and

in a division algebra, hence invertible.

Our goal is now to find a cyclic division algebra D = (K/F, σ, z) (where F = Q(z)) of index

` (more than d̃) and to construct a hitting set generator Gd :
¯
α 7→ (f0(

¯
α), . . . , f2d−1(¯

α)) for com-

mutative ROABPs with the additional property that fi+1(α1, . . . , αd+1) = σ(fi(α1, . . . , αd+1)) for

each 0 6 i 6 `− 2.
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We now examine the Forbes-Shpilka construction to incorporate these aspects. The construction

is recursive. Suppose that we have the construction for degree 2d−1.

The hitting set for degree 2d is obtained in [FS13] by combining two copies of the hitting set

for degree 2d−1 using the following key technical lemma, [FS13, Lemma 3.7], rephrased below in

somewhat different notation.

Let p`′(v), 1 6 `′ 6 r2 denote the Lagrange interpolation polynomials, defining a basis for

univariate polynomials interpolating values from [r2]. Given β1, . . . , βr2 ∈ F, the Lagrange interpo-

lation polynomials with respect to r2 and the βi’s are the unique polynomials p`′(v) of degree less

than r2 such that

p`′(βi) =

{
1 if `′ = i

0 otherwise.

Lemma 16. [FS13, Lemma 3.7] Let Mi and Ni, 0 6 i 6 2d−1 − 1, be r × r matrices with entries

from F[x] of degree less than n. Let (f0(u), f1(u), . . . , f2d−1−1(u)) ∈ F[u] be polynomials of degree

at most m. Let ω ∈ F (or in an extension field) be an element of order at least (2dnm)2. Define

polynomials in one indeterminate v:

f ′i =
r2∑
`′=1

fi(ω
`′αd)p`′(v), 0 6 i 6 2d−1 − 1

f ′i+2d−1 =
r2∑
`′=1

fi((ω
`′αd)

µ)p`′(v), 0 6 i 6 2d−1 − 1,

where µ = 2κ+d−1 + 1 and κ is chosen such that 2κ > 2dnm.

Then, for all but at most (2dnmr)2 many values of αd, the F-linear span of the matrix coefficients

of the matrix product
∏2d−1−1
i=0 Mi(fi(x))

∏2d−1−1
i=0 Ni(fi(y)) is contained in the F-linear span of the

matrix coefficients of the product
∏2d−1−1
i=0 Mi(f

′
i(v))

∏2d−1
i=2d−1 Ni(f

′
i(v)).

Lemma 16 essentially gives the construction for going from the degree 2d−1 hitting set generator

to the degree 2d hitting set generator as proved in [FS13].

Remark 17. In our modified construction we will use different roots of unity (for the element ω)

for different stages of the recursive construction. In particular, roots of unity ωi, i < d, used in

stages i < d will be of lower order. We explain below in detail, the choice of the parameters: `, κ,

ωi, and αi for the modified construction.

We now adapt Lemma 16 to ensure the additional properties that will guarantee that the points

of the hitting set are from Dn, for a suitably large cyclic division algebra D.

Theorem 18. In deterministic quasipolynomial-time, we can construct a hitting set H of size

(nrd̃)O(log d̃) in Dn for the class of noncommutative polynomials in Q〈x1, . . . , xn〉 computed by ABPs

of width at most r with d̃ many layers where the index of the cyclic division algebra D, the parameter

`(> d̃) is bounded by poly(r, n, d̃).

Proof. Let ` be the index of D. We set ` = 2L, where L is to be determined below. Thus, ω = e
2π

2L

is a 2L-th primitive root of unity. Let F = Q(z) and K = F (ω, z) which gives the cyclic division

algebra D = (K/F, σ, z) where we fix the K-automorphism σ as

σ(ω) = ω2κ+1,
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and κ will be suitably chosen in the following analysis, fulfilling the constraints of Lemma 16 and

some additional requirements.

Let ωi = ω2ai for a1 > a2 > · · · > ad > 0, where ai are positive integers to be chosen. Let

Ki = F (ωi) be the cyclic Galois extension for 1 6 i 6 d. This gives a tower of extension fields

F ⊂ F (ω1) ⊂ F (ω2) ⊂ · · · ⊂ F (ωd) ⊂ F (ω).

We require two properties of ωi, 1 6 i 6 d.

1. For the hitting set generator Gi we will choose the root of unity as ωi and the variable αi will

take values only in the set Wi = {ωji | 1 6 j 6 2L−ai}.

2. We require that the K-automorphism σ has the property that for all 1 6 i 6 d the map σ2
i

fixes ωi. In fact we will ensure that σ2
i

has F (ωi) as its fixed field.

We take up the second property. As σ(ω) = ω2κ+1, we have σ(ωi) = ω2ai (2κ+1). Therefore

σ2
i
(ωi) = ω2ai (2κ+1)2

i

.

Now, (2κ + 1)2
i

=
∑2i

j=0

(
2i

j

)
2κj . Choosing κ = L/2, we have ω2κj = 1 for j > 2. Therefore,

σ2
i
(ωi) = ω2ai (2i+κ+1) = ωi · ω2ai+i+κ .

We can set ai + i+ κ = L for 1 6 i 6 d to ensure that σ2
i

fixes ωi. Putting L = 2κ, we obtain

ai = κ− i for 1 6 i 6 d. (2)

It remains to choose κ. In the construction of our hitting set generator Gi, the parameter αi
will take values only in Wi defined above. We note that |Wi| = 2L−ai = 2κ+i. By Lemma 16 there

are at most (2dnmr)2 many bad values of αi for any i. Thus, it suffices to choose κ such that

2κ > (2dnmr)2. It suffices to set

κ = 2d+ d2 log2(nmr)e+ 1.

The choice of κ determines the value of parameter µ in Lemma 16.

Coming back to the modified construction of Gd, inductively, we can assume that the hitting set

generator Gd−1 : (α1, . . . , αd−1, u) 7→ (f0(u), f1(u), . . . , f2d−1−1(u)) (where for 0 6 i 6 2d−1 − 1, the

polynomial fi(u) ∈ Kd−1[u]) has that property. Namely, suppose fi+1(u) = σ(fi(u)) holds for all

i 6 2d−1− 2. Now define Gd using Lemma 16. Since p`′(v) has only integer coefficients, σ(p`′(v)) =

p`′(v). Therefore, for 0 6 i 6 2d−1 − 2 and for 2d−1 6 i 6 2d − 2 we have f ′i+1(v) = σ(f ′i(v)).

Now, consider i = 2d−1− 1. We need to ensure that σ(f ′
2d−1−1(v)) = f ′

2d−1(v). Equivalently, we

need to ensure that

σ

 r2∑
`′=1

f2d−1−1(ω
`′
d αd)p`′(v)

 =

r2∑
`′=1

f1((ω
`′
d αd)

µ)p`′(v).

This is enforced by requiring that
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σ2
d−1

 r2∑
`′=1

f1(ω
`′
d αd)p`′(v)

 =
r2∑
`′=1

f1((ω
`′
d αd)

µ)p`′(v).

Since αd will be chosen from Wd (all powers of ωd), we can write ω`
′
d αd = ωjd for some j. Now,

σ2
d−1

f1(ω
j
d) = f1(σ

2d−1
(ωjd)) as σ2

d−1
fixes all coefficients of f1 (because f1(u) ∈ Kd−1[u]). Now,

σ2
d−1

(ωjd)) = ω
j·(2κ+1)2

d−1

d = ω
j(1+2d−1+κ)
d = (ω`dαd)

µ,

which verifies the choice of µ in Lemma 16 is 1 + 2d−1+κ.

As shown in [FS13], the parameter v (whose place holder is αd+1 in the description of Gd) should

vary over a set of size poly(2d, n,m, r). This way we ensure that fi+1 = σ(fi) for 0 6 i 6 2d − 2.

Now define f2d+j = σ(f2d+j−1) for 0 6 j 6 `−2d−1. The fact that Gd is indeed a generator follows

from the span preserving property and the proof is identical to the proof of [FS13, Lemma 3.19].

Note that H is a strong hitting set for any such noncommutative ABP.

4 Strong Hitting Set for Generalized ABPs over Division Algebra

In this section, we first define the notion of generalized ABPs and ABPs over a division algebra.

Then we show the construction of a quasipolynomial-size strong hitting set for generalized ABPs

over a division algebra such that any nonzero generalized ABP will evaluate to an invertible matrix

at some point in the hitting set.

Definition 19. A generalized ABP over the matrix algebra Mm(F) is defined in the same way

as a noncommutative ABP, except for the fact that the linear forms labeling the edges are of the

form
∑n

i=1 aixibi, where ai, bi ∈ Mm(F). Such an ABP computes a generalized polynomial in the

generalized polynomial ring Mm(F)〈X〉, where the polynomial is defined as the sum of products of

the linear forms along all s-to-t paths of the ABP, where s is the source node and t is the sink node

of the directed acyclic graph underlying the ABP.

For a division algebra D, if the linear forms labeling the edges of the ABP are of the form∑n
i=1 aixibi, ai, bi ∈ D then it is a generalized ABP over the division algebra D.

Let D = (K/F, σ, z) (here F = Q(z)) be a cyclic division algebra of index ` as defined in Section

2.3. Let B = {Cij}i,j∈[`] be the F -basis of D for i, j ∈ [`] as described in Section 2. Informally,

our idea is to reduce the problem of finding strong hitting set for generalized ABPs over division

algebra to the hitting set construction of a product of commutative ROABPs.

Lemma 20. For any nonzero generalized ABP B of degree d over D〈
¯
x〉, there exists a substitution

for each xk of the following form:

M(xk) =


0 pk1 0 · · · 0

0 0 pk2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 pk(d−1)
pkd 0 · · · 0 0

 ,
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such that for each l ∈ [d], pkl is in D and image of B is invertible on that substitution under the

inclusion map a 7→ Id ⊗ a where a ∈ D.

Proof. Let ` be the index of the division algebra D. We first prove that for any nonzero generalized

ABP B of degree d over D〈
¯
x〉, there exists a substitution for each xk of the following form:

M(xk) =


0 qk1 0 · · · 0

0 0 qk2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 qk(d−1)
qkd 0 · · · 0 0

 ,

such that for each l ∈ [d], qkl is in M`(K) and the image of B is nonzero on that substitution with a

block-diagonal structure. To evaluate B on such matrix substitution the coefficients a ∈ D (which

have matrix representations in M`(K)) are fit to the correct dimension using the inclusion map

ι′ : M`(K)→Md`(K) where ι′(a) = Id ⊗ a.

Let ψ be the substitution map that replaces each variables {xk}k∈[n] by an `× ` matrix of non-

commuting variables {zijk}i,j∈[`],k∈[n]. One can naturally extend the definition of ψ : M`(K)〈
¯
x〉 →

M`(K 〈̄z〉) i.e. ψ maps a generalized polynomial over matrix algebra M`(K) to an ` × ` matrix

of noncommutative polynomials in K 〈̄z〉. Indeed, the map ψ is identity preserving (see [Vol18,

Equation 3.10] for example).

Introduce a new set of commuting variables Z̃ = {z̃ijkl} where i, j ∈ [`], k ∈ [n] and l ∈ [d] and

consider the following substitution for each xk:

Z̃k =


0 Z̃k1 0 · · · 0

0 0 Z̃k2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 Z̃k(d−1)
Z̃kd 0 · · · 0 0

 ,

where Z̃kl = (z̃ijkl)16i,j6`. In effect, the substitution of the xk variables by the matrices Z̃k is just

set-multilinearization of ψ(B) position-wise and hence identity preserving.

What is the effect of this substitution on a degree-d generalized word? To understand that

consider a generalized word w = a0xk1a1xk2 · · · ad−1xkdad where each ai ∈ M`(K). Observe that

w(Z̃1, . . . , Z̃n) is a block-diagonal matrix (using the inclusion map ι′) with (i, i)th block entry

a0Z̃k1πi(1)a1 · · · ad−1Z̃kdπi(d)ad where πi, 1 6 i 6 d is the cyclic permutations on [d] such that

πi(1) = i, πi(2) = i + 1 and so on. For example, consider the case d = 3. For a generalized word

a0x1a1x2a2x3a3, the image will be the following product:a0 a0
a0


 Z̃11

Z̃12

Z̃13


a1 a1

a1


 Z̃21

Z̃22

Z̃23


a2 a2

a2


 Z̃31

Z̃32

Z̃33


a3 a3

a3

 ,
which outputs the following diagonal matrix:a0Z̃11a1Z̃22a2Z̃33a3

a0Z̃12a1Z̃23a2Z̃31a3
a0Z̃13a1Z̃21a2Z̃32a3

 .
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Let B =
∑
a0xk1a1xk2a2 . . . ad−1xkdaid . So the (i, i)th entry of B(Z̃1, . . . , Z̃n) is

Bπi =
∑

a0Z̃k1πi(1)a1Z̃k2πi(2) . . . ad−1Z̃kdπi(d)aid .

Hence the final output matrix will be the following:

B(Z̃) =


Bπ1

Bπ2

. . .

Bπd

 .
We now claim the following.

Claim 21. For each i ∈ [d], Bπi is nonzero.

Proof. As B in D〈
¯
x〉 is nonzero and ψ is an identity preserving substitution, ψ(B) ∈ M`(K 〈̄z〉) is

also nonzero. We now consider the entry-wise set-multilinearization of ψ(B) with respect to the

cyclic permutation πi i.e. encoding any word using πi(j) as the position index for the jth position

for each entry of ψ(B). Notice that, it outputs the matrix Bπi . Moreover, as ψ(B) is nonzero, Bπi

must be nonzero as set-multilinearization preserves identity.

Hence, there exist substitutions qkl from M`(K) for the Z̃ variables such that B is nonzero.

Now we use Proposition 15 which says that K-linear span of B is the entire matrix algebra

M`(K). The above argument shows that if we replace each qkl in M(xk) by a linear combination∑
i,j

yijklCij ,

each diagonal block matrix of the output matrix obtained from the image of B on this evaluation

is still nonzero over the {yijkl} variables. We now find substitutions for the Y variables from the

ground field F to make each diagonal block matrix nonzero. As any F -linear combination of Cij
is in the division algebra, each such linear combinations is in D. So, define pkl =

∑
i,j βijklCij ∈ D

where βijkl are the substitutions for yijkl variables from F . In fact the values for the variables βijkl
can be found from Q itself by a standard use of Polynomial Identity Lemma [DL78, Zip79, Sch80].

Notice that, each diagonal block will also be in D. Since each diagonal block matrix is nonzero and

in D it is invertible. Therefore, the image of B is also invertible on the chosen matrix tuple.

We are now ready to prove the main result of this section.

Theorem 22. Given the parameters n, `, r, d, in deterministic quasipolynomial-time we can con-

struct strong hitting set H′ of size (nrd`)O(lognd`) for any nonzero generalized ABP B of degree d

and width r over D〈
¯
x〉 where ` is the index of D.

Proof. By Lemma 20, we know that there exists matrix tuple (p1, . . . , pn) in Mn
d`(K) of the following

form

pk = M(xk) =


0 pk1 0 · · · 0

0 0 pk2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 pk(d−1)
pkd 0 · · · 0 0

 ,
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where each pkl ∈ D : 1 6 k 6 n, 1 6 l 6 d such that B(p1, p2, . . . , pn) is an invertible matrix.

Write each pkl as pkl =
∑

i,j∈[`] yijklCij for some commuting indeterminates Y = {yijkl} whose

values we need to determine. On such a substitution, B evaluates to the following matrix:
B1

B2

. . .

Bd

 .
where each Bl, 1 6 l 6 d is nonzero by Lemma 20 (using the inclusion map ι′). We now observe

the following.

Claim 23. For each l ∈ [d], Bl is a matrix of commutative set-multilinear ABPs each of width r`.

Proof. To see this, consider the matrix B1. We can think of B1 as the matrix obtained by substi-

tuting pkl for xk in layer l of the input generalized ABP B over D of index `. This computation

can also be thought of by making `-many copies of each node in B.

More precisely, each coefficient a ∈ D in B has a ` × ` matrix representation over K. Now

consider each edge
∑n

k=1 akxkbk between the layer l and l + 1. Since xk is replaced by pkl and

ak, bk ∈ D, this edge can be replaced by an ` × ` bipartite graph such that for each i, j ∈ [`],

the edge connecting the ith node (from left) to the jth node (to right) is labeled by the (i, j)th

entry of the product of akpklbk, a linear form over K[Y ]. Clearly, it produces an `-input `-output

setmultilinear ABP of width r`. Therefore, each entry in B1 is computed by a set-multilinear ABP

of width r` and degree d. The situation for other Bl : 2 6 l 6 d are similar.

Therefore we can use a hitting set generator for commutative set-multilinear ABPs of width r`

and degree d to obtain a point such that the image for each Bl is nonzero on that evaluation.

However, our goal is to obtain an invertible image for the image of B. In other words, we want

a substitution of Y variables for which each Bl would be invertible. Notice that if for substitution

of Y variables from F at least one entry of Bl is nonzero, then the matrix Bl is also invertible

as the image of Bl is a nonzero element in D. Hence, to obtain a strong hitting set for the input

generalized ABP over D (equivalently, to obtain a substitution on which the product of the matrices

Bl, 1 6 l 6 d is invertible), it suffices to obtain a hitting set for the product of set-multilinear ABPs

(product of one of the nonzero entries of each Bl).

We do this by first converting each set-multilinear ABP to an ROABP encoding each yijkl

to v
(`+1)2i+(`+1)j+k
l

2. By construction each encoded Bl yields a known variable partition for the

corresponding ROABP. More precisely, for each l the ROABP computed in the (l, l)th diagonal

block follows the variable partition:

vl < vl+1 < . . . < vd < v1 < . . . < vl−1.

Therefore, for each nd`2-variate ROABP of degree d and of width `r computed in each diagonal

block, we can use the hitting set generator of Theorem 6. Now, for a d-fold product of such ROABPs

of different but known orders, the same hitting set generator will also work. This is because we

can ensure that the hitting set generator of Theorem 6 has the property that more than 1 − 1/d

2Note that by the choice, ` is larger than n and d.
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fraction of seeds for the generator works for a given ROABP with the above parameters. Then, by

a standard union bound argument it follows that there is a choice of seed for the generator that will

hit the product of these d many ROABPs. Notice that the ROABPs are all nd`2-variate, d-degree,

and of width `r. Thus by Theorem 6, the size of the hitting set for them is (nd`r)O(lognd`). Hence,

we can now find a substitution for the vl variables such that each Bl is invertible, hence B is also

invertible.

This gives us a hitting set H under the inclusion map ι′ : M`(K) → Md`(K) where ι′(a) =

Id ⊗ a. However for the purpose of Section 5, we find a hitting set H′ under the inclusion map

ι : M`(K) → Md`(K) where ι(a) = a ⊗ Id. Although it is technically possible to work with

two inclusion maps thanks to Remark 11, we find it mathematically nicer to work with a single

inclusion map. For this we explicitly find a permutation matrix q0 of dimension d` such that

q0(Id ⊗ a)q−10 = a ⊗ Id for all a ∈ M`(K). Once we find q0, the final hitting set can be defined as

H′ = {(q0p1q−10 , . . . , q0pnq
−1
0 ) |

¯
p ∈ H}. To see this, let

B =
∑

a0xk1a1 · · · ad−1xkdad.

Let M = B(q1, . . . , qn) is an invertible matrix for
¯
q ∈ H. We know that,∑

(Id ⊗ a0)qk1(Id ⊗ a1) · · · (Id ⊗ ad−1)qkd(Id ⊗ ad) = M. (3)

By conjugating M with q0, obtain the following:∑
q0(Id ⊗ a0)q−10 q′k1q0(Id ⊗ a1)q

−1
0 · · · q0(Id ⊗ ad−1)q

−1
0 q′kdq0(Id ⊗ ad)q

−1
0 = q0Mq−10 , (4)

where q′kj = q0qkjq
−1
0 . In other words B(q′1, . . . , q

′
n) is the invertible matrix M ′ = q0Mq−10 under

the inclusion map ι. In the following, we show that the permutation matrix q0 can be constructed

explicitly.

Proposition 24. For any a ∈M`(F), one can construct a d`× d` permutation matrix q0 such that

q0(Id ⊗ a)q−10 = a⊗ Id.

Proof. We can obtain a ⊗ Id from Id ⊗ a just by rearranging the rows and columns properly. Let

us divide the d` rows in group of d rows as 1, . . . , d, d+ 1, . . . , 2d, . . . , (`− 1)d, . . . , d`. We define q0
such that for the group of rows id+ 1 to id+ d (for 0 6 i 6 (`− 1)), the (id+ j, (j− 1)`+ (i+ 1))th

entry for 1 6 j 6 d is 1 and remaining entries to be zero. Notice that, q−10 is the transpose of q0 as

it is a permutation matrix. Now the proof follows from the definition of Id ⊗ a and a⊗ Id.
To elaborate, we consider the case where ` = 2 and d = 3 and give an illustrative example. In

this case, q0 and q−10 are the following matrices.

q0 =



1

1

1

1

1

1


, q−10 =



1

1

1

1

1

1


.
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Let, a =

[
1 2

3 4

]
, then, I3 ⊗ a =



1 2

3 4

1 2

3 4

1 2

3 4


.

Consider the effect of q0.

q0(I3 ⊗ a)q−10 =



1 2

1 2

1 2

3 4

3 4

3 4


= a⊗ I3.

5 Putting all together

In this section we prove our main result, the construction of a hitting set for noncommutative

rational formulas of inversion height two. An intermediate step is to construct a strong hitting set

for rational formulas of inversion height one. En route to our proof, we crucially use the connection

of rational identity testing with the identity testing of generalized ABPs. We make it explicit in

Proposition 26. But before this, we note a basic result that we use throughout the section.

Lemma 25. Let r ∈ F⦓
¯
x⦔ be a rational formula of size s. Let

¯
p = (p1, . . . , pn) ∈ Mn

m(F(t1, t2))

be an n-tuple of matrix of bivariate rational functions where the degrees of the numerator and

denominator polynomials over t1, t2 at each entry are at most d′ and r is defined at
¯
p. Then,

evaluating r on
¯
p outputs r(

¯
p) ∈Mm(F(t1, t2)) such that each entry of the output matrix is of form

P (t1,t2)
Q(t1,t2)

where P and Q are bivariate polynomials of degree at most O(smd′).

Proof. As already stated in Section 1 that r has a linear pencil L of size (at most) 2s such that for

any tuple
¯
p, r(

¯
p) is defined if and only if L(

¯
p) is invertible [HW15, Proposition 7.1]. Moreover,

r(
¯
p) = L−1i,j (

¯
p) for some (i, j)th entry of L i.e. r(

¯
p) is the (i, j)th block of L−1(

¯
p) thinking of it

as a 2s × 2s block matrix where each block is of size m. Notice that, if L =
∑n

i=1Aixi, then

L(
¯
p) =

∑n
i=1Ai ⊗ pi. Therefore, L(

¯
p) is a 2sm× 2sm matrix such that each entry is a polynomial

over t1, t2 of degree at most d′. From the standard computation of matrix inverse, it is immediate

that each entry of L−1(
¯
p) (therefore, each entry of r(

¯
p)) is a commutative rational function such

that the numerator and the denominator are bivariate polynomials over t1, t2 with degree bound

O(smd′).

Now we are ready to prove the main proposition.
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Proposition 26. Let r be a noncommutative rational formula over x1, . . . , xn of size s and

(q1, . . . , qn) ∈ Mn
m(F) be a matrix tuple such that r is defined on

¯
q. Suppose, r(

¯
x +

¯
q) is a rec-

ognizable generalized series over Mm(F)⟪
¯
x⟫ with a linear representation (c,M, b) of size at most

2s over Mm(F). Define S{d} = c ·Md · b computing a generalized polynomial in Mm(F)〈
¯
x〉. Then r

is nonzero in F⦓
¯
x⦔ if and only if S{d} is nonzero for some d 6 2sm− 1. Additionally, there exists

some N 6 poly(ksm) such that if |F| > N , then for any T ⊆ F, |T | = N and for some matrix tuple

(p1, . . . , pn) ∈Mn
km(F), evaluating S{d} at

¯
p under the inclusion map ι : Mm(F)→Mkm(F) (where

ι(a) = a⊗ Ik) for each d 6 2sm− 1,

1. If S{d} evaluates nonzero for some d , then there exists an α ∈ T such that r is nonzero at

the following matrix tuple:

(αp1 + q1 ⊗ Ik, . . . , αpn + qn ⊗ Ik).

2. If S{d}(
¯
p) is invertible for some d, there exists an α ∈ T such that r is invertible at the

following matrix tuple:

(αp1 + q1 ⊗ Ik, . . . , αpn + qn ⊗ Ik).

Proof. By Theorem 10, we know that r(
¯
x) is zero if and only if r(

¯
x +

¯
q) is zero. Let Z =

{zi,j,k′}16i,j6m,16k′6n be a set of noncommuting variables. Consider a substitution map ψ that

substitutes each variable xk′ , 1 6 k′ 6 n of r(
¯
x +

¯
q) by an m ×m matrix Zk′ consisting of fresh

noncommutative variables {zi,j,k′}16i,j6m. Consider r(ψ(
¯
x) +

¯
q) and observe that, ψ is an identity

preserving and degree preserving substitution.

From the definition, r(
¯
x +

¯
q) = c(I −M)−1b where M is of size at most 2s by Theorem 10.

Therefore, r(ψ(
¯
x) +

¯
q) = C(I − ψ(M))−1B, where it is convenient to think of c (respectively b) as

an m× 2ms (resp. 2ms×m) rectangular matrix C (resp. B), and ψ(M) as 2ms× 2ms matrix.

Observe that, for the matrix r(ψ(
¯
x) +

¯
q), the (i, j)th entry is the following recognizable series

which has linear representation of size at most 2sm:

Ci(I − ψ(M))−1Bj

where Ci is the ith row of C and Bj is the jth column of B. If r(
¯
x+

¯
q) is nonzero, then some (i, j)th

entry of r(ψ(
¯
x) +

¯
q) is also nonzero. Clearly, the degree-d truncated part of the matrix r(ψ(

¯
x) +

¯
q)

is ψ(S{d}). Moreover, for the matrix ψ(S{d}), each entry is computed by a noncommutative ABP

of width 2sm and depth d over Z variables. By Theorem 8, there exists a minimum d 6 2sm − 1

such that ψ(S{d}) and thus S{d} is nonzero. Clearly S{d} is computable by a generalized ABP.

Proof of part(1): Now, for some matrix tuple (p1, . . . , pn) ∈Mkm(F), let d 6 2sm− 1 such that

S{d} is nonzero at
¯
p under the inclusion map ι : Mm(F)→Mkm(F) given by ι : a→ a⊗Ik. Consider

the evaluation of r at (tp1 + q1 ⊗ Ik, . . . , tpn + qn ⊗ Ik) where t is some commuting indeterminate.

Let M(t) = r(tp1 + q1 ⊗ Ik, . . . , tpn + qn ⊗ Ik). We now interpret M(t) in two ways. First, think of

M(t) as the evaluation of the generalized series r(
¯
x +

¯
q) at (tp1, . . . , tpn) under the inclusion map

ι : Mm(F) → Mkm(F) given by ι : a → a ⊗ Ik. We can write M(t) = tdS{d}(
¯
p) + M ′(t) where

t-degree of each term of the matrix M ′(t) is strictly more than d. Therefore, M(t) is nonzero.

Another way to interpret M(t) is to evaluate the rational formula r on (tp1 + q1⊗ Ik, . . . , tpn +

qn ⊗ Ik). Since r is a rational formula of size s, each entry of the matrix M(t) is an element of
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the function field F(t). Moreover by Lemma 25, the t-degrees of the numerator and denominator

polynomials of each such commutative rational expression computed at all the nodes, are bounded

by d̂ = poly(ksm). Therefore, the final choice of the parameter t should be such that it avoids the

zeros of the numerator and denominator polynomials involved in the computation of M(t). This is

clearly possible by varying t over a poly(ksm) size set T ⊆ F.

Proof of part(2): The proof of the second part is similar. For some matrix tuple (p1, . . . , pn) ∈
Mkm(F), let d 6 2sm − 1 such that S{d} is invertible at

¯
p under the inclusion map ι : Mm(F) →

Mkm(F) given by ι : a→ a⊗ Ik. Let M(t) = r(tp1 + q1⊗ Ik, . . . , tpn + qn⊗ Ik). As before, consider

two interpretations of M(t). Think of M(t) as the evaluation of the generalized series r(
¯
x +

¯
q) at

(tp1, . . . , tpn) again under the inclusion map ι : Mm(F)→Mkm(F) given by ι : a→ a⊗Ik. We write

detM(t) = tmkd detS{d}(
¯
p) + M ′′(t) where t-degree of each term of the matrix M ′′(t) is strictly

more than mkd. Therefore, detM(t) is nonzero.

Interpret M(t) as the evaluation of the rational formula r on (tp1 + q1 ⊗ Ik, . . . , tpn + qn ⊗ Ik).
Since r is a rational formula of size s, each entry of the matrix M(t) is an element of the function

field F(t). Again by Lemma 25, the t-degrees of each numerator and denominator polynomial

involved in the computation of M(t) and detM(t) is also bounded by poly(ksm). Therefore, the

final choice of the parameter t should be such that it avoids the zeros of all such the numerator

and denominator polynomials involved in the computation of M(t) and det(M(t)). This is clearly

possible by varying t over any poly(ksm) size set T ⊆ F.

Final substitution is of the following form in both the cases:

{(αp1 + q1 ⊗ Ik, . . . , αpn + qn ⊗ Ik)}, (5)

for some suitably chosen α ∈ T ⊆ F.

Strong hitting set for rational formulas of inversion height one

We now show the construction of a strong hitting set for noncommutative rational formulas of

inversion height one.

Theorem 27. Given n, s, we can construct a strong hitting set H̃1 of size (ns)O(logns) over Mn
d′(K)

for the class of noncommutative rational formulas r ∈ Q⦓x1, . . . , xn⦔ of size s and of inversion

height one. The parameter d′ is poly(n, s) and K = Q(ω, z) is the extension field by adjoining a

primitive root of unity ω of order ` where ` = poly(n, s).

Proof. Let r(
¯
x) be a rational formula of inversion height one in Q⦓

¯
x⦔ of size s. Let h1, . . . , hk

be all the sub-formulas input to the inverse gates in the rational formula for r. Consider the

noncommutative formula h = h1h2 · · ·hk in Q〈
¯
x〉 which is of size at most s and degree is also

bounded by s.

By Theorem 18, we construct a hitting set H0 in Dn where D = (K/F, σ, z) is a cyclic division

algebra of index ` = poly(n, s) for noncommutative ABPs in Q〈
¯
x〉 of width and layers at most s.

Then there is a point
¯
q ∈ H0 such that h(

¯
q) is invertible and hence r(

¯
q) is defined.

Following Theorem 10, if r(
¯
x) is nonzero then r(

¯
x+

¯
q) can be represented as a nonzero recogniz-

able generalized series. Indeed, it is a recognizable generalized series over D following Theorem 10.

Moreover, using the second part of Proposition 26, to obtain a strong hitting set for r(
¯
x), it suffices
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to find a strong hitting set of a generalized ABP over D of width r 6 2s and degree d 6 2s` − 1.

We now use the strong hitting set H1 in Mn
d`(K) (recall that K = Q(z, ω) where ω is the primitive

root of unity of order `) for generalized ABPs of degree d over D (here ` is the index of D) obtained

in Theorem 22. Inspecting the proof of Proposition 26, we can now find a subset T ⊆ Q of size

poly(n, s) and the final quasipolynomial-size hitting set is the following:

Ĥ1 = {α
¯
p+

¯
q ⊗ Id :

¯
p ∈ H1,

¯
q ∈ H0, α ∈ T} ⊆Mn

d`(K).

Hitting set for rational formulas of inversion height two

We are now ready to prove our main theorem.

Proof of Theorem 1. Let r(
¯
x) be a rational formula of inversion height two in Q⦓

¯
x⦔ of size s. Let

F be the collection of all those inverse gates in the formula such that for every g ∈ F , the path

from the root to g does not contain any inverse gate. For each gi ∈ F , let hi be the sub-formula

input to gi. Consider the formula h = h1h2 · · ·hk (where k = |F|) which is of size at most s since

for each i, j, hi and hj are disjoint. h is of inversion height one. By Theorem 27, we construct a

strong hitting set Ĥ1 in Md(K) where d = poly(n, s). Then there is a point
¯
q ∈ Ĥ1 such that h(

¯
q)

is invertible and hence r(
¯
q) is defined.

Following Theorem 10, if r(
¯
x) is nonzero then r(

¯
x+

¯
q) can be represented as a nonzero recogniz-

able generalized series over Md(K). Moreover, using the first part of the proof of Proposition 26,

to obtain a hitting set for r(
¯
x), it suffices to find a hitting set for generalized ABP B over Md(K) of

width r 6 2s and degree d̂ 6 2sd− 1, the degree-d̂ truncated part of the generalized series r(
¯
x+

¯
q).

We recall the substitution map ψ from Proposition 26 and consider ψ(B). Each entry of ψ(B)

is computable by a noncommutative ABP of width 2sd and degree d̂ over Z = {zi,j,k′} variables.

Let HFS ⊆ Mnd2

d̂+1
(K) be the hitting set for ABPs of width 2sd and of degree d̂ over nd2 many

variables obtained from Theorem 7. We now define H̃FS ∈ Mn
d(d̂+1)

(K) in the following way. For

every matrix substitution in HFS , define a matrix substitution for each xk′ as a d(d̂+ 1)× d(d̂+ 1)

matrix which can be thought of as a d×d block matrix whose (i, j)th block is the matrix substituted

for zi,j,k′ variable from HFS . It follows that HFS is a hitting set of B under the inclusion map

a 7→ a⊗ Id̂+1.

Remark 28. To explain the purpose of the inclusion map a 7→ a⊗ Id̂+1, we illustrate with a small

example. Consider a generalized monomial a1x1a2x2a3 where a1, a2, a3 are 2×2 matrices. Now the

substitution map ψ replaces the variables x1, x2 by 2× 2 symbolic matrices over noncommutative

Z variables. So the entries of the output 2 × 2 matrix are noncommutative polynomials over Z

variables. Now substituting the Z variables by 3 × 3 matrices is equivalent to substituting x1, x2
by 6 × 6 matrices putting the 3 × 3 matrices in the corresponding blocks and evaluating it under

the inclusion map that blows up the 2× 2 matrices ai : 1 6 i 6 3 to ai ⊗ I3.

Inspecting the proof of Proposition 26, we can now find a subset T ⊆ Q of size poly(n, s) and

the final quasipolynomial-size hitting set is the following:

H2 = {α
¯
p+

¯
q ⊗ Id̂+1 :

¯
p ∈ H̃FS ,

¯
q ∈ Ĥ1, α ∈ T}. (6)
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Now we discuss how to obtain a hitting set over Q itself. In the hitting set points suppose we

replace ω and z by commuting indeterminates t1, t2 of degree bounded by `. Then, for any nonzero

rational formula r of size s there is a matrix tuple in the hitting set on which r evaluates to a nonzero

matrix M(t1, t2) of dimension poly(n, s) over the commutative function field Q(t1, t2). By Lemma

25, each entry of M(t1, t2) is a rational expression of the form a/b, where a and b are polynomials

in t1 and t2 and the degrees of both a and b are bounded by poly(n, s). Hence by the argument

sketched in Proposition 26, we can vary the parameters t1, t2 over a sufficiently large set T̃ ⊆ Q of

size poly(n, s) such that we avoid the roots of the numerator and denominator polynomials involved

in the computation. This gives our final hitting set H̃2 = {
¯
q′(α1, α2) :

¯
q′(ω, z) ∈ H2, (α1, α2) ∈

T̃ × T̃}.

6 Discussion

We have presented a deterministic quasipolynomial-time RIT algorithm for rational formulas of

inversion height two in the black-box model by a quasipolynomial size hitting set construction.

We briefly discuss a possible approach to obtain a quasipolynomial-size hitting set for constant

inversion height formulas. An inspection of the proof of Theorem 1 shows the following.

Let Ĥh be a strong hitting set of rational formulas of height h and H̃FS be the set of matrix

tuples as defined in that proof. Then, for a small set T we can define,

Hh+1 = {α
¯
p+

¯
q ⊗ Id̂+1 :

¯
p ∈ H̃FS ,

¯
q ∈ Ĥh, α ∈ T}.

Following the same proof, one can show Hh+1 is a hitting set for rational formulas of height h+ 1.

Therefore, we can conclude the following.

Lemma 29. If we have a quasipolynomial-size strong hitting set for rational formulas of inversion

height h, then we can efficiently construct a hitting set of quasipolynomial-size for rational formulas

of inversion height h+ 1 with a small blow-up in the dimension of matrices in the hitting set.

One way to construct a strong hitting set (say, for rational formulas of inversion height h) is

to construct a hitting set H such that the matrices occurring in each
¯
p ∈ H come from some

finite-dimensional division algebra D. We will refer to such hitting sets as division algebra hitting

sets. This is the approach we have taken. We can construct such a hitting set for rational formulas

of inversion height 0 (essentially for ABPs computing polynomials) which yields a strong hitting

set for inversion height 1 rational formulas which, in turn, by Lemma 29 yields a hitting set for

inversion height 2 rational formulas.

Indeed, in general, given a quasipolynomial-size construction of a division algebra hitting set

for inversion height h formulas, we can construct a strong hitting set for inversion height h + 1

formulas with a small increase in dimension of the matrices (the proof is along similar lines as

the construction in Section 4). If we could ensure that this construction yields not just a strong

hitting set but a division algebra hitting set then we will obtain a quasipolynomial-size hitting set

construction for all constant inversion height formulas.

We conjecture that it is possible to construct quasipolynomial-size hitting sets for rational

formulas of any constant inversion height in a division algebra of polynomially bounded index, and

we believe that generalized cyclic division algebras [Jac96] could be useful for the construction.

This is a reasonable conjecture because Derksen and Makam’s randomized RIT algorithm [DM17]
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shows that it suffices to evaluate rational formulas of size s on random 2s × 2s matrices. By

Proposition 15, we can ensure that random elements from a cyclic division algebra of small index

also suffices for the black-box RIT. Therefore, by a standard counting argument, the existence

of even a polynomial-size hitting set inside a cyclic division algebra of polynomial dimension is

guaranteed.
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