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The Noncommutative Edmonds’ Problem Re-visited

Abhranil Chatterjee∗ Partha Mukhopadhyay†

Abstract

Let ) be a matrix whose entries are linear forms over the noncommutative variables
G1 , G2 , . . . , G= . The noncommutative Edmonds’ problem (NSINGULAR) aims to determine
whether ) is invertible in the free skew field generated by G1 , G2, . . . , G= . Currently, there are
three different deterministic polynomial-time algorithms to solve this problem: using operator
scaling [1], algebraic methods [2], and convex optimization [3].

In this paper, we present a simpler algorithm for the NSINGULAR problem. While our
algorithmic template is similar to the one in [2], it significantly differs in its implementation of
the rank increment step. Instead of computing the limit of a second Wong sequence, we reduce
the problem to the polynomial identity testing (PIT) of noncommutative algebraic branching
programs (ABPs).

This enables us to bound the bit-complexity of the algorithm over Q without requiring
special care. Moreover, the rank increment step can be implemented in quasipolynomial-time
even without an explicit description of the coefficient matrices in) . This is possible by exploiting
the connection with the black-box PIT of noncommutative ABPs [4].
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1 Introduction

Let
¯
G = {G1 , . . . , G=} be = variables and F be a field. Consider the coefficient matrices

�0, �1, . . . , �= ∈ MB(F), and define an B × B symbolic matrix ) as ) = �0 + �1G1 + . . . + �=G= .
In 1967, Edmonds introduced the problem of deciding whether ) is invertible over the rational
function field F(G1 , G2, . . . , G=) [5], often referred to as the SINGULAR problem. More generally,
Edmonds was interested in computing the (commutative) rank of ) over the rational function
field F(G1 , . . . , G=). Equivalently, the problem asks to compute the maximum rank of a matrix
in the matrix space generated by the F-linear span of the coefficient matrices. The problem was
further studied by Lovász [6], in the context of graph matching and matroid-related problems. The
SINGULAR problem, more generally the rank computation problem, admits a simple randomized
polynomial-time algorithm due to the Polynomial Identity Lemma [7, 8, 9]. However, the quest
for an efficient deterministic algorithm remains elusive. Eventually, Kabanets and Impagliazzo
showed that any efficient deterministic algorithm for SINGULAR would lead to a strong circuit
lower bound, justifying the elusiveness over the years [10]. Interestingly, the commutative rank
computation problem admits a deterministic PTAS algorithm [11].

The rank computation problem is also well-studied in the noncommutative setting [12, 13].
More precisely, ) is still a linear matrix but the variables G1, . . . , G= are noncommuting. The
problem of testing whether ) is invertible (NSINGULAR), or the rank computation question
is naturally addressed over the noncommutative analog of the commutative function field, the
free skew field F⦓

¯
G⦔ = F⦓G1, G2, . . . , G=⦔. The free skew field has been extensively studied in

mathematics [14, 15, 16] and the definition is somewhat involved. However, for the purpose of this
paper, it is enough to state thatF⦓

¯
G⦔ is the smallest field over the variables {G1 , G2, . . . , G=}when we

drop even the commutativity relations. Similar to the commutative setting, the noncommutative
rank computation of ) has an equivalent definition involving the matrix space generated by the
F-linear span of the coefficient matrices. We say that the noncommutative rank of ) is B − 2 if 2 is
the maximum integer such that there exists a 2-shrunk subspace1 of the said matrix space.

Two independent breakthrough results showed that NSINGULAR ∈ P [1, 2]. In particular,
the algorithm of Garg, Gurvits, Oliveira, and Wigderson [1] is analytic in nature and based on
operator scaling which works over Q. The algorithm of Ivanyos, Qiao, and Subrahmanyam [2] is
purely algebraic. Moreover, the algorithm in their paper [2] works over Q and fields with positive
characteristics. Subsequently, a third algorithm based on convex optimization is also developed
by Hamada and Hirai [3]. Not only these are beautiful results, but also they enriched the field of
computational invariant theory greatly [17, 18].

In this paper, we propose a simpler algorithm for NSINGULAR. The main algorithmic template
of our algorithm is similar to [2]. However, there is an important difference in implementing one
of the core steps that we explain in the next subsection.

Theorem 1. Given an B × B matrix ) whose entries are Q-linear forms over the noncommuting vari-
ables {G1 , . . . , G=}, the noncommutative rank of ) over Q⦓G1 , . . . , G=⦔ can be computed in deterministic
poly(B, =) time. As a special case, NSINGULAR ∈ P.

Remark 2. The result of [2] works over fields of positive characteristics using the rudiments of
Galois theory. Similarly, our algorithm can also be extended over fields of positive characteristics.
Since the key algorithmic ideas remain exactly the same, we prefer to describe the algorithm only
over Q to minimize the use of the Galois theory machinery.

1We say * 6 F= is a 2-shrunk subspace of a matrix space ℬ if there exists, 6 F
= such that dim(,) 6 dim(*) − 2

and for all � ∈ ℬ, the set {�D : D ∈ *} 6 ,.
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1.1 The Overview

The noncommutative rank (ncrank) of an B × B matrix ) over the free skew field is the minimum A
such that ) can be written as ) = %& where % and& are B× A and A× B matrices with linear entries.
This is also referred to as the inner rank of ) [12]. There are several equivalent definitions of
noncommutative rank (see [19, 2] for more details). The definition of our particular interest in this
paper is the blow-up definition [2, 20]. Let) be written as ) = �0+

∑=
8=1 �8G8 where �0, �1, . . . , �=

are the coefficient matrices. For any matrix tuple
¯
? = (?1 , ?2, . . . , ?=) of dimension 3, the evaluation

is defined as the following B3 × B3 matrix:

)(
¯
?) = �0 ⊗ �3 +

=∑

8=1

�8 ⊗ ?8 .

Define){3} as the set of B3× B3matrices such that for each � ∈ ){3}, there is a 3-dimensional matrix
tuple

¯
? such that � = )(

¯
?). Let rank(){3}) be the maximum rank attained by a matrix in ){3}. The

regularity lemma [2, 20] shows that rank(){3}) is a multiple of 3. The blow-up definition of the

noncommutative rank is the limit of the sequence
(

rank()(
¯
?))

3

)
as 3 → ∞. It follows from [13, 2] that

ncrank()) = lim
3→∞

(
rank()(

¯
?))

3

)
.

In this paper, we present a deterministic polynomial-time algorithm to compute the noncom-
mutative rank of a linear matrix. The algorithmic template is similar to the algorithm of Ivanyos,
Qiao, and Subrahmanyam [2]. Before we present our algorithm, we first go over the key steps
of the algorithm presented in [2]. Given a linear matrix ) of size B, their algorithm gradually
computes the rank of ). Suppose the algorithm outputs a matrix in ){3} of rank at least A3 at any
intermediate stage (where it is always maintained that 3 6 B + 1). The next stage consists of two
main steps: (a) rank increment step, (b) rounding and blow-up control.

(a) Rank Increment Step

Given a matrix � in){3} of rank > A3, the algorithm first checks whether there exists another matrix
�′ in ){3′} (where 3′ > 3) of rank > A3′ + 1. If no such matrix exists, we output ncrank()) = A.
The correctness follows from the blow-up definition. Otherwise, the algorithm finds such a �′ and
proceeds to the next step. This step is technically involved and uses a linear algebraic procedure
involving the limit point computation of a second Wong sequence [21, 2]. Informally speaking, this is
analogous to the augmenting-path algorithm for bipartite matching. A direct implementation of
the limit point computation incurs a bit-complexity blow-up overQdue to the repeated application
of Gaussian eliminations. To tackle this, the notion of matrix pseudo-inverse is used [21, 2].

(b) Rounding and Blow-up Control

Once we have the matrix �′ in ){3′} of rank > A3′ + 1, the rounding step of the algorithm uses a
constructive version of the regularity lemma to find another matrix �′′ in ){3′} such that the rank
of �′′ is a multiple of 3′ and rank(�′′) > rank(�′). That implies the rank of �′′ is A′3′ where A′

is at least A + 1. Here, 3′ is at least a constant multiple of 3. One can not afford such a blow-up
in the dimension during every round of the algorithm as it incurs an exponential blow-up in the
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final dimension. They reduce the dimension by repeated application of the rounding step and

the constructive version of the regularity lemma. Finally, it outputs a matrix �̂ of rank A′3′′ where
A′ > A + 1 and 3′′ 6 A′ + 1.

Our algorithm

One of the main features of our algorithm is that, we implement the rank increment step without
using the second Wong sequence. At a high level, the rank increment step of our algorithm has
a conceptual similarity with the proof idea used in [22]. If for a matrix tuple

¯
? of dimension 3,

the rank of )(
¯
?) > A3, then we say that

¯
? is a witness of noncommutative rank A of ). Using

simple linear algebraic ideas, we reduce the rank increment step to the polynomial identity testing
of noncommutative ABPs. As we show in Lemma 18, Lemma 19, and Corollary 20 that to find a
witness of a larger rank, it suffices to compute a matrix tuple where a noncommutative ABP does
not evaluate to zero. This requires applying simple and well-known identity testing algorithms
[23, 24]. This way one can compute a matrix tuple

¯
?′ of dimension 31 such that the rank of

)(
¯
?′) > A31. Interestingly, there is no intermediate bit-complexity blow-up over Q.

The rest of the algorithm follows the rounding and the blow-up control steps of [2] closely. In
Lemma 13, we show how to embed

¯
?′ in a division algebra � of index 31 to compute another tuple

¯
?′′, a witness of rank A′ of ) where A′ > A + 1. More precisely, the rank of )(

¯
?′′) > (A + 1)31. For the

division algebra �, we use a well-known explicit construction of cyclic division algebra from [25].

We then use Lemma 21 to control the blow-up in the dimension and output the matrix tuple
̂
¯
? of dimension at most 3′ such that rank()) > (A + 1)3′ where 3′ 6 A′ + 1. Hence ̂

¯
? is a witness

that ncrank()) > A + 1. We need to repeat the entire procedure for at most B rounds where B is the
dimension of ).

We finally remark that unlike [2], the rank increment step does not need an explicit description
of the coefficient matrices of ) if we settle with a quasipolynomial-time algorithm. Essentially,
we can use the quasipolynomial-size explicit hitting set construction for the identity testing of
noncommutative ABPs by Forbes and Shpilka [4] in place of the algorithm by Raz and Shplika
[23]. We elaborate on this in Section 4. We believe that the connection with the noncommutative
polynomial identity testing could be useful in understanding the black-box and the parallel
complexity of NSINGULAR which are long-standing open problems [1, 19].

Organization. In Section 2, we collect background results from algebraic complexity theory and
cyclic division algebras. We prove Theorem 1 in Section 3. The main contribution of the paper is
in the implementation of the rank increment step which is presented in Subsection 3.2.1. The final
algorithm is presented in Subsection 3.3. Section 4 contains some additional remarks related to
the rank increment step in the black-box setting.

2 Background and Notation

Throughout the paper, we use F, �,  for fields. M<(F) (resp. M<(�),M<( )) is used for <
dimensional matrix algebra over F where < is clear from the context. Similarly, we use M<(F)

=

(resp. M<(�)
= ,M<( )

=) to denote the set of = tuples over M<(F) (resp. M<(�),M<( )). � is used
to denote a division algebra. Let

¯
G be the set of variables {G1 , . . . , G=}. Sometimes we use

¯
?,

¯
@ to

denote the matrix tuples in suitable matrix algebras. The free noncommutative ring of polynomials
over a field F is denoted by F〈

¯
G〉. The notation � ⊗ � is the usual tensor product of the matrices

�, �.
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2.1 Algebraic Complexity

Definition 3 (Algebraic Branching Program). An algebraic branching program (ABP) is a layered
directed acyclic graph. The vertex set is partitioned into layers 0, 1, . . . , 3, with directed edges only
between adjacent layers (8 to 8 + 1). There is a source vertex of in-degree 0 in the layer 0, and one
out-degree 0 sink vertex in layer 3. Each edge is labeled by an affine F-linear form. The polynomial
computed by the ABP is the sum over all source-to-sink directed paths of the ordered product of
affine forms labeling the path edges.

The size of the ABP is defined as the total number of nodes and the width is the maximum number
of nodes in a layer. An ABP can compute a commutative or a noncommutative polynomial. ABPs
of width F can also be seen as iterated matrix multiplication

¯
2 · "1"2 · · ·"ℓ ·

¯
1, where

¯
2,
¯
1 are

1 ×F and F × 1 vectors respectively and each "8 is a F ×F matrix, whose entries are affine linear
forms over

¯
G.

Identity testing results

Given a noncommutative ABP, Raz and Shpilka have given a deterministic polynomial time algo-
rithm to check whether the polynomial computed by the ABP is zero or not [23].

Theorem 4 (Raz-Shpilka [23]). Given a noncommutative ABP of width F and 3 many layers computing
a polynomial 5 ∈ F〈

¯
G〉, there is a deterministic poly(F, 3, =) time algorithm to test whether 5 ≡ 0 or not.

In fact, the following corollary is standard by now. This was first formally observed in [24]
using a minor adaptation of [23].

Corollary 5. Given a noncommutative ABP of widthF and 3many layers computing a nonzero polynomial
5 ∈ F〈

¯
G〉, there is a deterministic poly(F, 3, =) time algorithm which outputs a nonzero monomial < in 5 .

If F = Q, the bit-complexity of the algorithm is poly(F, 3, =, 1) where 1 is the maximum bit-complexity of
any coefficient in the input ABP.

Essentially, the algorithm of Raz and Shpilka maintains basis vectors (indexed by at most F
monomials) in each layer of the ABP using simple linear algebraic computations. The entries of
the basis vectors are the coefficients of the indexing monomials in different nodes of the ABP along
the width.

Given such a monomial < = G81G82 . . . G83 , [24] introduced a simple trick to produce a matrix
tuple in M3+1(F)

= on which 5 evaluates to nonzero. To see that consider a 3 + 1 state deterministic
finite automaton A that accepts only the string G81G82 . . . G83 over the alphabet {G1 , G2, . . . , G=}. The
transition matrix tuple ("G1 , . . . , "G= ) of A have the property that 5 ("G1 , . . . , "G= ) ≠ 0. More
precisely, the automaton A is the following.

@0 @1 @2 @3
G81 G82 · · · · · · G83

The transition matrices "G 9 : 1 6 9 6 = are (3+1) dimensional (0, 1)-matrices with the property
that "G 9 (ℓ , ℓ + 1) = 1 if and only if G 9 is the edge label between @ℓ and @ℓ+1 for 0 6 ℓ 6 3 − 1. This
we record as a corollary.

Corollary 6. Given a noncommutative ABP of width F and 3 layers computing a nonzero polynomial 5 ∈
F〈

¯
G〉, there is a deterministic polynomial-time algorithm that can output a matrix tuple ("1, "2, . . . , "=)

of dimension at most 3 + 1 such that 5 ("1, "2, . . . , "=) ≠ 0.

4



2.2 Cyclic Division Algebras

A division algebra � is an associative algebra over a (commutative) field F such that all nonzero
elements in � are units (they have a multiplicative inverse). In the context of this paper, we are
interested in finite-dimensional division algebras. Specifically, we focus on cyclic division algebras
and their construction [25, Chapter 5]. Let � = Q(I), where I is a commuting indeterminate. Let
$ be an ℓ Cℎ primitive root of unity. To be specific, let $ = 42�8/ℓ . Let  = �($) = Q($, I) be the
cyclic Galois extension of � obtained by adjoining $. The elements of  are polynomials in $ (of
degree at most ℓ − 1) with coefficients from �.

Define � :  →  by letting �($) = $: for some : relatively prime to ℓ and stipulating that
�(0) = 0 for all 0 ∈ �. Then � is an automorphism of  with � as fixed field and it generates the
Galois group Gal( /�).

The division algebra � = ( /�, �, I) is defined using a new indeterminate G as the ℓ -
dimensional vector space:

� =  ⊕  G ⊕ · · · ⊕  Gℓ−1,

where the (noncommutative) multiplication for� is defined by Gℓ = I and G1 = �(1)G for all 1 ∈  .
Then � is a division algebra of dimension ℓ 2 over � [25, Theorem 14.9]. The index of � is defined
to be the square root of the dimension of � over �. In our example, � is of index ℓ .

The elements of � has matrix representation in  ℓ×ℓ from its action on the basis X =

{1, G, . . . , Gℓ−1}. I.e., for 0 ∈ � and G 9 ∈ X, the 9Cℎ row of the matrix representation is obtained by
writing G 90 in the X-basis.

For example, the matrix representation "(G) of G is:

"(G)[8 , 9] =




1 if 9 = 8 + 1, 8 6 ℓ − 1

I if 8 = ℓ , 9 = 1

0 otherwise.

"(G) =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
I 0 · · · 0 0



.

For each 1 ∈  its matrix representation "(1) is:

"(1)[8 , 9] =




1 if 8 = 9 = 1

�8−1(1) if 8 = 9 , 8 > 2

0 otherwise.

"(1) =



1 0 0 0 0 0
0 �(1) 0 0 0 0
0 0 �2(1) 0 0 0

0 0 0
. . . 0 0

0 0 0 0 �ℓ−2(1) 0
0 0 0 0 0 �ℓ−1(1)
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Remark 7. We note that "(G) has a “circulant” matrix structure and "(1) is a diagonal matrix. For
a vector E ∈  ℓ , it is convenient to write circ(E1 , E2, . . . , Eℓ ) for the ℓ×ℓ matrix with (8 , 8+1)Cℎ entry E8
for 8 6 ℓ−1, (ℓ , 1)Cℎ entry as Eℓ and remaining entries zero. Thus, we have"(G) = circ(1, 1, . . . , 1, I).
Similarly, we write diag(E1 , E2, . . . , Eℓ ) for the diagonal matrix with entries E8 .

Fact 8. The �-algebra generated by "(G) and "(1), 1 ∈  is an isomorphic copy of the cyclic division
algebra in the matrix algebra Mℓ ( ).

Proposition 9. For all 1 ∈  , circ(1, �(1), . . . , I�ℓ−1(1)) = "(1) ·"(G).

Define �8, 9 = "($ 9−1) · "(G 8−1) for 1 6 8 , 9 6 ℓ . Observe that, B = {�89 , 8 , 9 ∈ [ℓ ]} be a
�-generating set for the division algebra �. The following proposition is a standard fact.

Proposition 10. [25, Section 14(14.13)] Then  linear span of B is the entire matrix algebra Mℓ ( ).

3 Noncommutative Rank Computation

In this section, we present the proof of Theorem 1. For the sake of the reader, let us first recall
the definition of the inner rank, the blow-up rank of a linear matrix, and their equivalence from
Section 1.1.

The noncommutative rank (ncrank) or the inner rank of an B × B linear matrix ) over the
noncommuting variables G1, G2, . . . , G= is the minimum A such that ) = % · & where % is an B × A
matrix and & is an A × B matrix with entries linear in G1, . . . , G= [12].

Let ) be an B × B matrix whose entries are linear forms over {G1 , G2, . . . , G=}. We can write
) = �0 +

∑=
8=1 �8G8 where �0, �1, . . . , �= are the coefficient matrices. Given such a matrix ) over

the variables G1, . . . , G= and 3 ∈ N, let

){3}
= {)(

¯
?) |

¯
? ∈ M3(F)

=}.

Here )(
¯
?) = �0 ⊗ �3 +

∑=
8=1 �8 ⊗ ?8 . Define rank(){3}) = max

¯
?{rank()(

¯
?))}. The regularity lemma

[2, 20] shows that rank(){3}) is always a multiple of 3. In Section 3.1, we discuss a constructive
version of this lemma.

Definition 11. The blow-up rank of the matrix ) is defined as

ncrank∗()) = lim
3→∞

rank(){3})

3
.

Using the regularity lemma and the weakly increasing property of the sequence
(

rank(){3})
3

)
3>1

, it

is shown that the limit exists [26, Chapter 4]. For any linear matrix ), it is known that ncrank()) =
ncrank∗()) [2]. Henceforth, we work with the blow-up rank of ) but continue to denote it by
ncrank()) for notational simplicity. The blow-up rank motivates us to define the following notion
of a witness.

Definition 12 (Witness of rank A). Let �0, �1, . . . , �= ∈ MB(F) and ) = �0 +
∑=
8=1 �8G8. We say that

¯
? = (?1 , . . . , ?=) ∈ M3(F)

= for some 3 is a witness of noncommutative rank A of), if rank()(
¯
?)) > A3.
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3.1 Constructive Regularity Lemma

Suppose that for a linear matrix ), we already have a matrix tuple
¯
@ of dimension 3, a witness

of rank A of ) such that rank()(
¯
@)) > A3. Then the constructive regularity lemma offers a simple

and general procedure to get a 3 × 3 witness of rank A + 1 for ) [2]. We state essentially the same
proof as described in [2]. But for clarity and simplicity, we use the explicit cyclic division algebra
construction described in Section 2.2. Following Section 2.2, the field � = Q(I) and  = �($).

Lemma 13. [2] For any B × B matrix ) = �0 +
∑=
8=1 �8G8 , and a matrix tuple

¯
@ = (@1, . . . , @=) ∈ M3( )

=

such that rank()(
¯
@)) > A3, there exists a deterministic poly(=, B, 3)-time algorithm that returns another

matrix substitution
¯
@′ = (@′1, . . . , @

′
=) ∈ M3( )

= such that rank()(
¯
@′)) > (A + 1)3.

Proof. Let � = ( /�, �, I) be the cyclic division algebra described in Section 2.2. Recall that
� = Q(I) and  = �($) and B = {�8, 9 : 8 , 9 ∈ [3]} is a �-generating set of �.

1. Using Proposition 10, we can express @: =
∑
8, 9 �8, 9,:�8, 9 where �8, 9,: : 1 6 : 6 = are

unknown variables which take values in  . Using linear algebra we determine the values
�0
8, 9,:

: 1 6 8 , 9 6 ℓ , 1 6 : 6 = for the unknowns in  .

2. Now the goal is to compute a 3 × 3 tuple
¯
@′ = (@′1, . . . , @

′
=) such that @′

:
=

∑
8, 9 �

0
8, 9,:

�8, 9 where

�0
8, 9,:

∈ � and rank()(
¯
@′)) > (A + 1)3. We briefly describe the procedure outlined in [2]. Write

@̃1 = �1,1,1�1,1,1 +
∑

(8, 9)≠(1,1) �
0
8, 9,1

�8, 9 where �1,1,1 is a variable. There will be a sub-matrix of

size > A3 whose minor is non-zero, under the current substitution (@̃1, @2, . . . , @=). Since the
determinant of that sub-matrix is a univariate polynomial in �1,1,1 and degree poly(A, 3), we
can easily fix the value of �1,1,1 from Q such that the minor remains nonzero. Repeating the
procedure, we can compute the desired tuple

¯
@′. Since

¯
@′ is a tuple over the division algebra,

rank()(
¯
@′)) > (A + 1)3.

�

Remark 14. The last line of the above proof is easy to see. The matrix )(
¯
@′) can be viewed as a

B× B block-matrix of 3-dimensional blocks, and each such block is an element in�. Since Gaussian
elimination is supported over division algebras, up to elementary row and column operations, we
can transform )(

¯
@′) as: (

� 0

0 0

)

where � is an identity matrix which has at least A + 1 blocks of identity matrices �3 on its diagonal.
Hence rank()(

¯
@′)) > (A + 1)3.

3.2 The Plan of the Algorithm

Following [2], we first give a simple template.

Algorithm Template

Input: ) = �0 +
∑=
8=1 �8G8 where �0, �1, . . . , �= ∈ MB(Q).

Output: The noncommutative rank of ).

7



The algorithm gradually constructs a witness at every stage. Suppose we already have a
witness of rank A for ).

1. Is A the maximum rank?

2. If yes, output A to be the noncommutative rank of ).

3. Otherwise, find a witness of rank at least A + 1 and go to Step 1.

We now discuss each step in detail.

3.2.1 Rank Increment Step

For an B × B linear matrix )(
¯
G) = �0 +

∑=
8=1 �8G8 and 3 ∈ N, define

)3(/) = �0 ⊗ �3 +

=∑

8=1

�8 ⊗ /8

where /8 = (I
(8)
9:
)16 9,:63 is a 3 × 3 generic matrix with noncommutative indeterminates. In other

words, / = (/1 , /2, . . . , /=) is the substitution used for the variables G1, G2, . . . , G= in ). Now)3(/)

is a linear matrix of dimension B3 over the variables {I
(8)
9:
}16 9,:63,1686= .

Remark 15. It is immediate to see that any 3 × 3 matrix shift )3(/1 + ?1, /2 + ?2, . . . , /= + ?=) is

indeed a scalar shift for the variables {I
(8)

9:
}16 9,:63,1686= in the matrix )3.

Lemma 16. ncrank()3) = 3 · ncrank()).

Proof. Let ncrank()) = A. Therefore, for every sufficiently large 3′′, the maximum rank obtained
by evaluating ) over all the 3′′ × 3′′ matrix tuple is A3′′. Consider 3′′ = 33′, a multiple of 3 and let

¯
@ = (@1, . . . , @=) ∈ M3′′( )

= be a matrix tuple such that rank()(
¯
@)) = A33′. Let

¯
? = (?

(1)
11 , . . . , ?

(1)

33
, . . . , ?

(=)
11 , . . . , ?

(=)

33
)

be the matrix tuple in M3′( )
=32

such that each @8 = (?
(8)
9:
)16 9,:63 , i.e. we think of @8 as 3 × 3 block

matrix where the (9 , :)Cℎ block is ?
(8)
9:

. Notice that )3(
¯
?) = �0 ⊗ �33′ +

∑=
8=1 �8 ⊗ @8 = )(

¯
@). Notice

that, the matrix @8 is substituted for the variable G8 in ). Therefore, rank()(
¯
@)) = rank()3(

¯
?)) and

ncrank()3) > A3.

For the other direction, as ncrank()) = A, we can write ) = % ·& where %, & are B × A and A × B
matrices respectively with linear entries. We can now define an B3×A3matrix %′(/) by substituting
each G8 by /8 in the matrix %(

¯
G). Similarly, we can define a A3 × B3 matrix &′(/) from &(

¯
G). Notice

that, )3 = %
′ · &′. Therefore, ncrank()3) 6 A3. Hence, the lemma follows. �

Suppose, we have already computed a witness of noncommutative rank A of ), namely
¯
? =

(?1 , . . . , ?=) ∈ M3( )
= (by construction, we will ensure that 3 6 A + 1). We now check whether

ncrank()) > A or not.

Observe that, )3(/1 + ?1, . . . , /= + ?=) = *

(
�A3 − ! �

� �

)
+
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for invertible transformations *,+ in MA3( ). In fact, using further invertible transformations
*′, +′ over the free skew field  ⦓/⦔ we can write

)3(/1 + ?1, . . . , /= + ?=) = **
′

(
�A3 − ! 0

0 � − �(�A3 − !)
−1�

)
+′+.

Here,*′
=

(
�A3 0

�(�A3 − !)
−1 �(B−A)3

)
, +′

=

(
�A3 (�A3 − !)

−1�

0 �(B−A)3

)
.

Let )̃3 = �−�(�A3−!)
−1�. Notice that the (8 , 9)Cℎ entry of )̃3 is given by (̃)3)89 = �89−�8(�A3−!)

−1� 9

where �8 is the 8Cℎ row vector of � and � 9 is the 9Cℎ column vector of �.

Lemma 17. ncrank()) > A if and only if (̃)3)89 ≠ 0 for some choice of 8 , 9.

Proof. Let ncrank()) > A. Then by Lemma 16, ncrank()3) > A3. The noncommutative rank of a
linear matrix is invariant under a scalar shift 2 , hence ncrank()3(/1+?1, . . . , /=+?=)) = ncrank()3) >
A3. However, if � − �(�A3 − !)

−1� is a zero matrix, this is impossible.

Conversely if (̃)3)89 = �89 − �8(�A3 − !)
−1� 9 is nonzero for some indices 8 , 9, we can find matrix

substitutions ?̃
(:)
ℓ1ℓ2

of dimension 3′ for the variables {I
(:)
ℓ1ℓ2

}16ℓ1 ,ℓ263,16:6= , such that the rank of

)3(/1+?1, . . . , /=+?=)on that substitution is more than A33′. Therefore, ncrank()3(/1+?1, . . . , /=+
?=)) > A3. Hence ncrank()3) > A3. By Lemma 16, we get that ncrank()) > A. �

The next lemma says that the infinite series (̃)3)89 ≠ 0 is equivalent in saying that a suitably trun-

cated polynomial %̃89 obtained from (̃)3)89 is nonzero. The proof of the lemma is fairly standard [27,
Corollary 8.3, Page 145]. However, we present a self-contained proof of it.

Lemma 18. (̃)3)89 ≠ 0 if and only if %̃89 = �89 − �8
(∑

:6A3−1 !
:
)
� 9 ≠ 0.

Proof. We first notice that, (̃)3)89 is zero in the free skew field over the /-variables if and only if the

formal power series �89 − �8
(∑

:>0 !
:
)
� 9 is zero. Therefore, if (̃)3)89 = 0, then obviously %̃89 = 0 as

the power series is zero.

Now suppose %̃89 = 0. Note the terms in �89 are linear forms and the degree of any term in

�8
(∑

:>0 !
:
)
� 9 is at least two. So �89 must be zero. For simplicity, identify the /-variables with

I1, I2, . . . , I# where # = =32. Write the row and column vectors �8 and � 9 as �8 =
∑
ℓ �8,ℓ Iℓ , � 9 =∑

ℓ � 9,ℓ Iℓ . Similarly, write ! =
∑
ℓ !ℓ Iℓ . Let, if possible, �8!

A3� 9 contributes a nonzero monomial
(word) F = I81I82 . . . I8A3+2

. Clearly the coefficient of F is �8,81!82 . . . !8A3+1
� 9,8A3+2

. Look at the vectors
E1 = �8,81 , E2 = �8,81!82 , . . . , EA3+1 = �8,81!82 . . . !8A3+1

corresponding to the prefix words F1 =

I81 , F2 = I81I82 , . . . , FA3+1 = I81 . . . I8A3+1
. They can not be all linearly independent since they are

A3-dimensional vectors. Hence there exists scalars �1 , . . . ,�A3+1 such that �1E1 + . . .�A3+1EA3+1 = 0.
However, EA3+1� 9,8A3+2

≠ 0 by the assumption. Hence there exists at least one vector Eℓ : 1 6 ℓ 6 A3
such that Eℓ� 9,8A3+2

≠ 0. This means that the coefficient of the word Fℓ I8A3+2
of length at most A3 + 1

is nonzero in %̃89, which is not possible.

We now repeat the same argument to show the infinite series �8
(∑

:>0 !
:
)
� 9 = 0. �

2Consider a linear matrix ! that achieves the maximum rank for a matrix substitution
¯
@ of some dimension 3. Then,

for any scalar shift (1 , . . . , = ), the shifted linear matrix !(
¯
G +

¯
) achieves the same rank on the matrix tuple

¯
@ −

¯
 ⊗ �3 .

9



Next, we apply Corollary 5 and Corollary 6 to output a matrix tuple efficiently on which (̃)3)89
evaluates to nonzero and �A3 − ! evaluates to a full rank matrix.

Lemma 19. There is a deterministic poly(=, A, 3)-time algorithm that can output a matrix tuple
¯
@ of

dimension at most 3′ = 2A3 for the / variables such that �A33′ − !(
¯
@) is invertible and (̃)3)89(

¯
@) ≠ 0.

Proof. Notice that %̃89 is an ABP of size poly(A, 3) and the number of layers is at most A3 + 1.

Applying Corollary 6, we get a matrix tuple of dimension at most A3 + 2 such that %̃89 evaluates on
it to nonzero. By simple padding, we can get a matrix tuple

¯
@′ of dimension 3′ = 2A3 such that

%̃89(
¯
@′) ≠ 0. Since

¯
@′ is a substitution for the / variables {I

(:)
ℓ1ℓ2

} where 1 6 : 6 =, 1 6 ℓ1, ℓ2 6 3, we

write
¯
@′ = (@

′(1)
11
, . . . , @

′(1)
33
, . . . , @

′(=)
11
, . . . , @

′(=)
33

) for more clarity. Here each @
′(:)
ℓ1ℓ2

is a 3′ dimensional
matrix.

Consider a commutative variable C and the scaled matrix tuple C
¯
@′. It is easy to see that the

infinite series �89 − �8(�A33′ − !(C
¯
@′))−1� 9 is nonzero since the :Cℎ homogeneous part C:�8!

:(
¯
@′)� 9

will not mix with other homogeneous components.

However this also has a rational representation (̃)3)89(C
¯
@′) = �1(C)/�2(C) where C-degrees of the

polynomials �1(C), �2(C) are bounded by A33′. Moreover �A33′−!(C
¯
@′) is an invertible matrix and the

degree of det(�A33′ − !(C
¯
@′)) is bounded by A33′ over the variable C. Simply by varying the variable

C over a suitable large set Γ of size $(A3), we can fix a value for C = C0 such that (̃)3)89(C0
¯
@′) ≠ 0 and

�A33′ − !(C0
¯
@′) is of rank A33′. Define

¯
@ = C0

¯
@′. �

Following is an immediate corollary.

Corollary 20. Suppose Lemma 19 outputs a matrix tuple
¯
@. We can compute another matrix tuple

¯
?′ of

dimension 33′ which is a witness of ncrank()) > A.

Proof. Define the matrix tuple
¯
@′′ = (@

′′(1)
11 , . . . , @

′′(1)
33

, . . . , @
′′(=)
11 , . . . , @

′′(=)
33

) where @
′′(:)
ℓ1ℓ2

= @
(:)
ℓ1ℓ2

+ ?
(:)
ℓ1ℓ2

⊗

�3′ is a 3′ dimensional matrix tuple for 1 6 : 6 =, 1 6 ℓ1, ℓ2 6 3.

Lemma 19 shows that the rank of )3 evaluated on the matrix tuple
¯
@′′ is more than A33′. This is

same as saying that)3(/) is of rank more than A33′ when the variable I:
ℓ1 ,ℓ2

: 1 6 : 6 =, 1 6 ℓ1, ℓ2 6 3

is substituted by @
′′(:)
ℓ1ℓ2

. Hence ncrank()3) > A3. By Lemma 16, we know that ncrank()) > A.

Moreover, we obtain a matrix tuple
¯
?′ = (?′1, ?

′
2, . . . , ?

′
=) which is a witness of ncrank()) > A, where

?′
:
=

(
@
′′(:)
ℓ1ℓ2

)
16ℓ1 ,ℓ263

: 1 6 : 6 =. Notice that
¯
?′ is the substitution for the

¯
G variables. �

3.2.2 Rounding and Blow-up Control

Next, we apply Lemma 13 which gives a rounding procedure to get a matrix tuple of dimension
31 = 33′ to witness that ncrank()) = A′ where A′ > A + 1. Call that new matrix tuple as

¯
?′′.

However, we can not afford to have such a dimension blow-up for the witness matrix tuple in
every step of the iteration as it incurs an exponential blow-up in the dimension of the final witness.
To control that, we use a simple trick from [2] which we describe for the sake of completeness.

Lemma 21. Consider an B × B linear matrix ) and a matrix tuple
¯
?′′ in M31( )

= such that
¯
?′′ is a witness

of rank A′ of ). We can efficiently compute another matrix tuple ̂
¯
? of dimension at most A′ + 1 such that ̂

¯
? is

also a witness of rank A′ of ).
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Proof. Consider a sub-matrix � in )(
¯
?′′) such that rank(�) is at least A′31. From each matrix in

the tuple
¯
?′′, remove the last row and the column to get another tuple ˜

¯
?. We claim that the

corresponding sub-matrix �′ in ) (̃
¯
?) is of rank > (A′ − 1)(31 − 1) as long as 31 > A′ + 1. Otherwise,

rank(�) 6 rank(�′) + 2A′ 6 (A′ − 1)(31 − 1) + 2A′ = A′31 − 31 + A
′ + 1 < A′31. Now we can use the

constructive regularity lemma (Lemma 13) on the tuple ˜
¯
? to obtain another witness of dimension

31 − 1 which is a witness of rank A′ of ). Applying the procedure repeatedly, we can control the
blow-up in the dimension within A′ + 1 and get the witness tuple ̂

¯
?. �

3.3 The Final Algorithm

We now summarize our overall strategy.

Algorithm

Input: ) = �0 +
∑=
8=1 �8G8 where �0, �1, . . . , �= ∈ MB(Q).

Output: The noncommutative rank of ).

The algorithm gradually increases the rank and finds a witness for it. Suppose at any
intermediate stage, we already have a matrix tuple

¯
? in M3( )

= , a witness of rank A of ).

1. (Is A the maximum rank?) Use Theorem 4 to check whether the polynomial %̃89 ≠ 0 (as
defined in Lemma 18) for some choice of 8 , 9.

2. If "NO", output A to be the noncommutative rank of ).

3. (Otherwise, construct a witness of rank A + 1 and repeat Step 1) We implement the
following steps to construct a rank (A + 1)-witness:

(a) [Rank increment step] Apply Corollary 20 to find a 31 × 31 matrix substitution

¯
?′ = (?′1 , . . . , ?

′
=) such that rank()(

¯
?′)) > A31 where 31 = 2A32.

(b) [Rounding using the regularity lemma] Apply Lemma 13 to find another 31 × 31

matrix substitution (?′′
1
, . . . , ?′′=) such that the rank of ) evaluated at (?′′

1
, . . . , ?′′=) is

A′31 where A′ > A + 1.

(c) [Reducing the witness size] Apply Lemma 21 to find a matrix substitution ̂
¯
? =

(?̂1 , . . . , ?̂=) of dimension 3′ 6 A′+ 1, such that the rank of ) evaluated at̂
¯
? is > A′3′.

Analysis

Since the noncommutative rank of ) is at most B, the algorithm iterates at most B steps. Lemma 18,
Theotem 4, and Lemma 19 guarantee that Step 1 and Step 3(a) can be done in poly(=, A, 3) steps.
Step 3(b) and 3(c) require straightforward linear algebraic computations discussed in Section 3.2.2
which can be performed in poly(=, 3, A) time. Since 3 6 B + 1 throughout the process, the run time
is bounded by poly(=, B). Understanding the bit-complexity of the algorithm is very simple. Let
the witness of rank A has bit-complexity 1. In the rank increment step the matrix constructed in
Corollary 6 has only 0, 1 entries and the parameter C0 is of poly(B, 3). So the bit-complexity after
step 3(a) can change to 1 + log(B3) at most. Step 3(b) is a simple linear algebraic step that can at
most incur bit-complexity by an additive factor poly(B, 3). Therefore, the overall bit-complexity of
the algorithm is poly(B).
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4 Further Remarks

It is well-known that testing whether a bipartite graph has a perfect matching can be reduced to
NSINGULAR using Hall’s theorem [19]. The bipartite matching problem is in (black-box) quasi-
NC via a hitting set construction [28]. In contrast, designing an efficient black-box algorithm (or
even a parallel algorithm) for NSINGULAR is wide open [19].

Interestingly, the algorithm presented in this paper can be adapted to get a black-box solution
for the following problem.

Given a 4-tuple 〈B, A , 3, =〉 ∈ N4, construct efficiently a universal set ℋB,A ,=,3 ⊆ M:A3(Q)= (for some
integer :) of sub-exponential size such that the following is true:

Consider any Q-linear matrix ) defined over G1, G2, . . . , G= and a tuple
¯
? ∈ M3(Q)= such that

rank()(
¯
?)) > A3. Then, ncrank()) > A if and only if there exists a tuple

¯
@ ∈ ℋB,A ,=,3 such that

rank()(
¯
@ +

¯
? ⊗ �:A)) > A3.

The connection with the noncommutative ABP identity testing enables us to construct such a
set of quasipolynomial-size. We need to use the quasipolynomial-size hitting set construction for
noncommutative ABPs by Forbes and Shpilka [4]. More precisely, in the proof of Lemma 19 we
need to use the hitting set of [4] in place of Corollary 20. The rest of the arguments remain exactly
the same. The size of the set ℋB,A ,=,3 will be (BA=3)$(log A3) and the parameter : will be 2A3. This
step is black-box in the sense that it does not use the explicit description of the coefficient matrices
�0, �1, �2, . . . , �= . It is unclear how to solve this problem using the second Wong sequence-based
techniques [21, 2].
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