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Abstract
We explore a special case of rational identity testing and algorithmic versions of two theorems
on noncommutative polynomials, namely, Amitsur’s theorem [2] and the Brešar-Klep theorem [7]
when the input polynomial is given by an algebraic branching program (ABP). Let f be a degree-d
n-variate noncommutative polynomial in the free ring Q〈x1, x2, . . . , xn〉 over rationals.

1. We consider the following special case of rational identity testing: Given a noncommutative
ABP as white-box, whose edge labels are linear forms or inverses of linear forms, we show a
deterministic polynomial-time algorithm to decide if the rational function computed by it is
equivalent to zero in the free skew field Q⦓X⦔. Given black-box access to the ABP, we give a
deterministic quasi-polynomial time algorithm for this problem.

2. Amitsur’s theorem implies that if a noncommutative polynomial f is nonzero on k × k matrices
then, in fact, f(M1,M2, . . . ,Mn) is invertible for some matrix tuple (M1,M2, . . . ,Mn) ∈
(Mk(Q))n. While a randomized polynomial time algorithm to find such (M1,M2, . . . ,Mn)
given black-box access to f is simple, we obtain a deterministic sO(log d) time algorithm for the
problem with black-box access to f , where s is the minimum ABP size for f and d is the degree
of f .

3. The Brešar-Klep Theorem states that the span of the range of any noncommutative polynomial
f on k×k matrices over Q is one of the following: zero, scalar multiples of Ik, trace-zero matrices
in Mk(Q), or all of Mk(Q). We obtain a deterministic polynomial-time algorithm to decide which
case occurs, given white-box access to an ABP for f . We also give a deterministic sO(log d) time
algorithm given black-box access to an ABP of size s for f . Our algorithms work when k ≥ d.

Our techniques are based on some automata theory combined with known techniques for
noncommutative ABP identity testing [14, 9].
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1 Introduction

Let X = {x1, x2, . . . , xn} be a set of n free noncommuting variables and F be any scalar
field. The free noncommutative ring F〈X〉 is the ring of all noncommutative polynomials in
X-variables over the field F.

Noncommutative arithmetic complexity deals with the complexity of computing noncom-
mutative polynomials in noncommutative models of computation like circuits, formulas, and
branching programs. For instance, noncommutative arithmetic circuits have addition and
multiplication gates, and circuit inputs are either variables from X = {x1, x2, . . . , xn} or
scalars from the field F. Multiplication gates respect its input order since the variables are
noncommuting. An important research theme is polynomial identity testing (PIT) for non-
commutative models of computation. It is motivated by the hope that efficient deterministic
PIT algorithms in noncommutative models of computation should be substantially easier
than their commutative counterparts.

Bogdanov and Wee [6] showed a randomized polynomial-time PIT algorithm for noncom-
mutative circuits computing a polynomial of polynomially bounded degree, based on the
Amitsur-Levitzki theorem [1]. This theorem states that a nonzero polynomial p ∈ F〈X〉 of
degree < 2k cannot be an identity for the ring Mk(F) of k × k matrices over F.

For noncommmutative algebraic branching programs (ABPs) there is a deterministic
polynomial-time PIT algorithm in the white-box model [14]. In the black-box model, there
is a quasi-polynomial time deterministic algorithm given by a quasi-polynomial size hitting
set construction [9]. In contrast, for commutative algebraic branching programs efficient
deterministic PIT algorithms are known only in very restricted cases.

Rational Identity Testing

More recently, Hrubeš and Wigderson [11] initiated the study of noncommutative computation
with inverses which is mathematically complicated to analyze. We define noncommutative
rational formulas and noncommutative rational circuits, analogous to noncommutative circuits
computing polynomials, by allowing +, ×, and unary inversion gates. In particular, rational
formulas (equivalently, rational expressions, which we use in more mathematical contexts)
as usual have a tree-like structure with every non-output gate having a fanout of 1. These
models computes noncommutative rational functions which are elements of the free skew-field.
They introduce the rational identity testing (RIT) problem [11]: Given a noncommutative
formula, determine if it is identically zero in the free skew-field of noncommutative rational
functions. By definition, a rational expression r is identically zero in the free skew-field if
and only if r has a nonempty domain of definition and for each d ∈ N and substitution from
Md(F) (the matrix algebra of d× d matrices over the field F), the expression evaluates to
the zero matrix if it is defined. Using techniques based on operator scaling and invariant
theory, the RIT problem for noncommutative rational formulas is shown [10, 12] to be in
deterministic polynomial time in the white-box model. It is also shown to be in randomized
polynomial time in the black-box model [8].

The complexity of identity testing for noncommutative rational circuits in general remains
unclear. Nothing better than an exponential time upper bound is known. In particular, even
for rational circuits of inversion height one (inversion height of a circuit is the maximum
number of inverse gates present in any input to output path in the circuit [11]), we do not
know a sub-exponential time randomized algorithm.

Recently, we considered [3] noncommutative rational circuits that allow inverse gates
applied only to circuit inputs. Such circuits can be seen as computing free group algebra
expressions: that is, F-linear combinations of words over the free group. Free group algebra
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expressions are a special case of inversion height one rational circuits. For this special case
we could give a randomized polynomial-time algorithm for identity testing 1. We show,
analogous to the Bogdanov-Wee algorithm for noncommutative polynomials [6], that it
suffices for the algorithm to simply evaluate the given degree d free group algebra expression
on random 2d× 2d matrices over F.

In general, a noncommutative rational circuit of inversion height one can be obtained as
composition of a free group algebra expression with noncommutative polynomials. Thus, the
next case to consider for identity testing is to allow inverses on linear forms. However, even
in this case we do not have a sub-exponential time algorithm. This naturally leads us to
consider an easier case of rational identity testing for algebraic branching programs whose
multi-edges are labeled by affine linear forms or inverses of affine linear forms. Clearly, such
ABPs compute rational expressions of inversion height one in the free skew field. The rational
expression computed by the ABP is the sum over each source-to-sink path P of the ordered
product of affine linear forms or their inverses labeling P . The size of the ABP is defined as
the total number nodes and multi-edges. For this model a deterministic quasi-polynomial time
white-box algorithm and a randomized quasi-polynomial time black-box algorithm follows
respectively from [10, 12] and [8]. In this paper, we obtain deterministic polynomial time
white-box algorithm and a deterministic quasi-polynomial time algorithm for the black-box
model.

I Theorem 1. Given an ABP (in white-box) of size s where each edge is labeled by an affine
linear form or inverse of an affine linear form over Q, there is a deterministic poly(s, n) time
algorithm to decide if the rational expression computed by it is zero in Q⦓X⦔. If such an
ABP is given as a black-box then there is a deterministic (ns)O(log(ns))-time algorithm for it.

Image of Noncommutative ABPs

In the second part of the paper, we focus on the image set of noncommutative polynomials. For
matrix algebra Mk(F), the image set of a noncommutative polynomial (similarly, for rational
function) f ∈ F〈X〉 is defined as the set Imgk(f) = {f(a1, . . . , an) | a1, . . . , an ∈ Mk(F)}
for some k. There is a connection between image sets of rational expressions and rational
identity testing. Indeed, a rational expression r of inversion height i is defined at a matrix
substitution (a1, . . . , an) ∈ (Mk(F))n, precisely when for each of its subexpressions r′ of
inversion height i − 1, the matrix r′(a1, . . . , an) is invertible. This connection motivates
the following problem: Given a noncommutative ABP, find a matrix substitution such that
the output matrix is invertible. A randomized polynomial time algorithm for this problem
follows from Amitsur’s theorem [2] which promises that if f is nonzero on k × k matrices
then f has invertible matrices in its range. We obtain a deterministic quasi-polynomial time
algorithm for this problem when k ≥ d where d is the degree of the polynomial.

I Theorem 2. Given black-box access to a noncommutative polynomial f ∈ F〈X〉 of degree d,
computable by an ABP A of size s, there is a deterministic quasi-polynomial time algorithm
of run time sO(log d) that computes a matrix tuple (M1,M2, . . . ,Mn) ∈ (Md(F))n of d × d
matrices such that f(M1,M2, . . . ,Mn) is invertible. Here the ground field F could be any
field which is sufficiently large.

1 The time bound is polynomial in the maximum length d of reduced words in the expression, to be
precise. We refer to d as the degree of the expression.

MFCS 2020
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The Brešar-Klep Theorem

We next turn to another algorithmic question related to the image of noncommutative
polynomial motivated by the following interesting theorem due to Brešar and Klep [7].

I Theorem 3 (Brešar-Klep Theorem[7]). Let f ∈ F〈X〉 be any noncommutative polynomial,
where F is a field of zero characteristic. Then precisely one of the following is true:
1. Imgk(f) = 0, which means f is an identity for Mk(F).
2. The span of Imgk(f) consists of all scalar multiples of the identity matrix Ik (i.e., f is

central for Mk(F)).
3. The span of Imgk(f) is all trace zero matrices over Mk(F).
4. The span of Imgk(f) is Mk(F).

The Brešar-Klep theorem naturally raises an algorithmic question: Given a noncommut-
ative polynomial f and the matrix algebra Mk(F), to efficiently determine which of the four
cases occur.

I Proposition 4. Let f ∈ Q〈X〉 be a noncommutative polynomial of degree d over rationals
given by an arithmetic circuit of size s. For any matrix algebra Mk(Q) we can check in
randomized time poly(s, d, k) which of the four conditions of the Brešar-Klep theorem hold
for f over Mk(Q).

This is easily observed by substituting the noncommuting variables with generic k×k size
matrices and evaluating the commuting generic variables randomly. We show the following
result which yields an efficient deterministic algorithm.

I Theorem 5. Given a noncommutative ABP A of size s computing a polynomial f ∈ F〈X〉
of degree d, there is a deterministic poly(n, s, d)-time algorithm to check if Imgk(f) is trace
zero over Mk(F) for all k ≥ d. If A is given by black-box access, there is a deterministic
(ns)O(log d)-time algorithm to check if Imgk(f) is trace zero for all k ≥ d. Here the ground
field F could be any field which is sufficiently large.

The above theorem easily yields a deterministic polynomial-time algorithm to check which
of the four conditions of the Brešar-Klep theorem holds for matrix algebras of dimension
k ≥ d for a noncommutative polynomial f given by an ABP.

2 Preliminaries

Notation. The trace of a square matrix A ∈ Mt(F) is the sum of all its diagonal entries.
In symbols, Trace(A) =

∑t
i=1 A[i, i]. For an m × n matrix A and p × q matrix B, over a

field F, their tensor product A⊗B is an mp× nq (block) matrix obtained by replacing the
(i, j)th entry A[i, j] of A by the matrix A[i, j]B. For a set of noncommuting variables X, the
free noncommmutative ring of polynomials over a field F is denoted by F〈X〉. The ring of
formal power series is denoted by F⟪X⟫. For a series (or polynomial) S, the coefficient of a
monomial m ∈ X∗ in S is denoted by [m]S. Let supp(S) denote the support of the series S:
supp(S) = {m | [m]S 6= 0}.

I Definition 6 (Algebraic Branching Program). An algebraic branching program (ABP) is
a layered directed acyclic graph. The vertex set is partitioned into layers 0, 1, . . . , d, with
directed edges only between adjacent layers (i to i+ 1). There is a source vertex of in-degree
0 in layer 0, and one out-degree-0 sink vertex in layer d. Each edge is labeled by an affine
F-linear form. The polynomial computed by the ABP is the sum over all source-to-sink
directed paths of the ordered product of affine forms labeling the path edges.
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The size of the ABP is defined as the total number of nodes and multi-edges and width
is the maximum number of nodes in a layer. The ABP model is defined for computing
commutative or noncommutative polynomials. ABPs of width w can also be seen as iterated
matrix multiplication uTM1M2 . . .M`v, where u,v are w×1 vectors and each Mi is a w×w
matrix, whose entries are affine linear forms in variables X.

We also consider commutative set-multilinear polynomials. Here, the (commutative)
variable set is partitioned as Y = Y1 tY2 t · · · tYd where for each j ∈ [d], Yj = {yi,j}ni=1.
A polynomial f is set-multilinear if it is homogeneous degree d such that each nonzero
monomial m is of the form m = yi1,1yi2,2 . . . yid,d.

Given a homogeneous degree d noncommutative polynomial f , its set-multilinearization
SM(f) is the corresponding set-multilinear polynomial obtained by replacing xi in the jth
position (in a monomial) by yi,j in every monomial. Clearly, f ≡ 0 if and only if SM(f) ≡ 0.

We recall two well-known PIT results of noncommutative ABPs.

I Theorem 7 (Raz-Shpilka [14]). Given an ABP of width w and d many layers computing a
polynomial f ∈ F〈X〉, there is a deterministic poly(w, d, n) time algorithm to test whether
f ≡ 0 or not.

For black-box case, Forbes and Shpilka [9], have a shown an efficient construction of quasi-
polynomial size hitting set for noncommutative ABPs. Consider the class of noncommutative
ABPs of width w, and depth d computing polynomials in F〈X〉. The result of Forbes-Shpilka
provide an explicit construction (in quasi-polynomial time) of a set Hw,d,n contained in
Md+1(F), such that for any ABP (with parameters w and d) computing a nonzero polynomial
f , there always exists α ∈ Hw,d,n such that f(α) 6= 0.

I Theorem 8 (Forbes-Shpilka [9]). For all w, d, n ∈ N, if |F| ≥ poly(d, n, w), then there is
a hitting set Hw,d,n ⊂ Md+1(F) for noncommutative ABPs of parameters w, d, n such that
|Hw,d,n |≤ (wdn)O(log d) and there is a deterministic algorithm to output the set Hw,d,n in
time (wdn)O(log d).

There is an extension of this construction to commutative set-multilinear polynomials
computed by ABPs where layers respect the variable partition [9]. We will use this result in
Section 5.

Automata Theory. We recall some automata theory. More details can be found in the
Berstel-Reutenauer book [5].

Let K be a semiring and X be an alphabet 2. A K-weighted automaton over X is a
4-tuple, A = (Q, I,E, T ), where Q is a finite set of states, and the mappings I, T : Q→ K

are weight functions for entering and leaving a state respectively, and E : Q×X×Q→ K

is the weight of each transition. We define |Q|, the number of states, to be the size of the
automaton. A path is a sequence of edges : (q0, a1, q1)(q1, a2, q2) . . . (qt−1, at, qt). The weight
of the path is the product of the weights of the edges. The formal series S ∈ K⟪X⟫ which is
the (possibly infinite) sum of the weights over all the paths that are recognized by A. Then,
for each word w = a1a2 · · · at ∈ X∗, the contribution of all the paths for the word w is given
by [w]S =

∑
q0,...,qt∈Q I(q0) · E(q0, a1, q1) · · ·E(qt−1, at, qt) · T (qt).

AK-weighted automaton A with ε-transitions over X is defined with E modified, such that
E : Q× {X ∪ ε} ×Q→ K. Let A0 ∈M|Q|(K) be the transition matrix for the ε-transitions.

2 We interchangeably use X as a variable set of ABPs and as alphabet symbol of weighted automata.

MFCS 2020
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It is well-known that if
∑
k A

k
0 converges, then another automaton A′ without ε-transitions

computing the same series can be constructed [13]. By definition, such automaton is said to
be valid if

∑
k A

k
0 converges.

The following basic result by Schützenberger [15] is key to transform zeroness testing of
weighted automata to identity testing of ABPs.

I Theorem 9 (Schützenberger). Let K be a subring of a division ring and A be a K-weighted
automaton without any ε-transition with s states computing a series S in K⟪X⟫. Then S
is a nonzero series if and only if there is a word w ∈ X∗ of length at most s− 1, such that
w ∈ supp(S).

3 Identity Testing of ABPs with Inverse of Linear forms

In this section we prove Theorem 1. In the generalized ABP model we allow directed
multi-edges from nodes in layer i to layer i+ 1 (we allow multiple edges between the same
pair of nodes), where each edge is labeled by some affine linear form or the inverse of an
affine linear form. Recall that, the size s is the total number of nodes and the multi-edges
present in the ABP.

A simple fact about formal power series that we use is replacing the rational expression
(1− x)−1 by the power series x∗, which is used to convert an ABP where edges are labeled
by linear forms and its inverses to an automaton computing a formal series. 3 In general,
an affine linear form may have zero constant term. In order to apply the above, we require
a linear shift xj 7→ αj − xj , j ∈ [n], enabling power series expansion of the inverses of the
linear forms. The following lemma (proof omitted) explains the efficient finding of such linear
shifts.

I Lemma 10. Let F be a field such that |F| ≥ nr + 1. We can efficiently construct a subset
S ⊆ Fn of size nr + 1 such that for any r affine linear forms L1, . . . , Lr over X, there is a
point α ∈ S such that for all i, Li(α) 6= 0.

The following lemma shows that rational identity testing of such ABPs is efficiently
reducible to zero testing of a weighted automaton computing a formal series in F⟪X⟫.
I Lemma 11. Let A be a generalized ABP of size s with each edge labeled by either an
affine linear form or the inverse of an affine linear form, computing a rational expression f
in F⦓X⦔. Let r be the total number of multi-edges of A. Then, there is an automaton A′

without ε-transitions of size at most s+ r computing a formal series in F⟪X⟫ such that f is
an identity in F⦓X⦔ if and only if A′ computes a zero series in F⟪X⟫. Moreover, A′ can be
constructed in poly(n, s, r) time.

Proof. We present the proof in two parts. We first explain the automaton construction.
Then, we show that this construction is identity preserving.
Construction of the Automaton: Let L1, L2, . . . , Lr be all the linear forms appearing as
Li or L−1

i in A. By Lemma 10, we can efficiently compute a set S ⊆ Fn of size nr + 1 such
that there exists a point α ∈ S such that for each i ∈ [r], Li(α1 − x1, . . . , αn − xn) has a
nonzero constant term. Fix such a tuple α = (α1, α2, . . . , αn) ∈ S. We apply the linear shift
xj 7→ αj − xj to each edge label of A, and let g denote the rational expression in F⦓X⦔
computed by the resulting ABP.

3 Notice that by the Kleene expression x∗ is meant the formal power series 1 + x+ x2 + · · · instead of
the set {ε, x, x2 . . .}. In this sense, in general, we will consider weighted automaton as evaluating to a
formal power series.
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As each Li(α1 − x1, . . . , αn − xn) has a constant term, we may write it as βi(1− L̃i), for
a homogeneous linear form L̃i, where βi 6= 0. We can convert (1− L̃i)−1 to the formal power
series L̃∗i to obtain L−1

i = β−1
i L̃∗i . Thus, any edge labeled L−1

i can be labeled by a Kleene-∗
expression. From this observation, we now show that g can also be converted to a formal
series in F⟪X⟫ computed by a small automaton.

This is a standard adaptation of Kleene’s original construction. We locally substitute
each ∗-expression by a small automaton. We illustrate this with an example. Consider the
edge shown in Figure 1 having linear form and inverses. In Figure 2, we convert the linear
forms with inverses to ∗-expressions by the linear shift xj 7→ 1− xj . Finally, in Figure 3, we
show the transitions of an equivalent automaton by replacing the ∗-rational expressions by
their corresponding automata.

0 1
2x1 − x2 + (x1 − 2x2)−1 − 2(x1 + x2)−1

Figure 1 Edge Labels having linear form and inverses.

0 1
1− 2x1 + x2 − (−x1 + 2x2)∗ − ( x1

2 + x2
2 )∗

Figure 2 Edge Labels rewritten as ∗-rational expression after applying the shift xi 7→ 1− xi.

0 31

2

1− 2x1 + x2

−x1 + 2x2

−1 1
−1

(x1 + x2)/2

1

Figure 3 Edge Labels replaced by an appropriate automaton.

It is useful to consider the transition matrix M for the final automaton. In the current
example this is given by the following matrix.

M =


0 −1 −1 1− 2x1 + x2
0 −x1 + 2x2 0 1
0 0 x1+x2

2 1
0 0 0 0

 .
Clearly, applying the above transformation to each edge of the input ABP A produces an

automaton Ã of size at most s+ r, because we introduce a new node in the automaton for
each L−1 term. Moreover, Ã can be constructed in poly(n, s, r) time.

B Claim 12. Ã computes a valid formal series in F⟪X⟫.
Proof. Consider the transition matrix of the automaton A0 corresponding to the ε-transitions.
To show that Ã computes a valid formal series in F⟪X⟫, it suffices to prove that

∑
k A

k
0

converges (Proposition 2 in [13]). As the automaton introduces self-loops labeled by homo-
geneous linear forms only, and it does not have back-edges, the matrix A0 is strictly upper
triangular (see the above example). Hence, A0 is nilpotent and

∑
k A

k
0 converges. C

MFCS 2020
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As mentioned in Section 2, by a standard construction we can compute an automaton A′
without ε-transitions equivalent of Ã [13]. The overall time to construct A′ is bounded by
poly(n, s, r).

Identity Preserving

B Claim 13. A 6≡ 0 in F⦓X⦔ if and only if A′ does not compute a zero series in F⟪X⟫.

Proof. Let f be a nonzero rational expression in F⦓X⦔ computed by A. Then, for some t ∈ N
and matrix tuple (M1, . . . ,Mn) ∈ (Mt(F))n, we have f(M1, . . . ,Mn) 6= 0. Therefore, g =
f(α1−x1, . . . , αn−xn) is also a nonzero rational expression in F⦓X⦔ as g(M ′1, . . . ,M ′n) 6= 0,
where M ′j = αjIt −Mj for each j ∈ [n].

To prove that A′ computes a nonzero series, it suffices to show that for some matrix
substitution A′ is defined and outputs a nonzero matrix on that substitution. In g, each affine
linear form with inverse looks like βi(1− L̃i)−1 where βi is nonzero and L̃i is a homogeneous
linear form. Now, let Ni = L̃i(M ′1, . . . ,M ′n). Since g is defined and nonzero at the point
(M ′1, . . . ,M ′n), the matrix (It −Ni) is invertible for each i. But it may happen that for some
j ∈ [r], the matrix

∑
kN

k
j does not converge and hence A′ is not defined at this matrix tuple.

To avoid this problem, we can choose γ ∈ Q sufficiently small ensuring that g(γM ′1, . . . , γM ′n)
is still defined and nonzero, moreover, for each i ∈ [r], the matrix

∑
kN

k
i , thus obtained,

also converges. The following fact is classical and a proof of it is, for example, in [16].

I Fact 1. For any matrix B over Q, the Neumann series
∑
k B

k converges if the spectral
norm of B is less than 1.

I Observation 1. Let g be a rational expression in F⦓X⦔ and suppose g(M ′1, . . . ,M ′n) 6= 0 for
some t× t matrices M ′i . Then there are only finitely many γ ∈ F for which g(γM ′1, . . . , γM ′n)
is not defined or g(γM ′1, . . . , γM ′n) = 0.

Proof. Let us think the parameter γ as indeterminate and note that the output matrix
g(γM ′1, . . . , γM ′n) is a t× t matrix, where each entry is a commutative rational function of
form h1

h2
and h1 and h2 are univariate polynomials in γ. The degree of each such h1, h2 is

some finite value depending on the rational expression g. Clearly, it is not a zero matrix in
Mk(F(γ)), as for γ = 1, it is nonzero. Hence, to ensure that g(γM ′1, . . . , γM ′n) is defined and
nonzero, it suffices to avoid the roots of the univariates of each entry. J

By Observation 1, we can choose γ small enough such that, for each i ∈ [r], spectral
norm of Ni is less than 1. By Fact 1, the automaton A′ is also defined and nonzero on
(γM ′1, . . . , γM ′n). Therefore, A′ computes a nonzero series.

Conversely, suppose that A′ computes a nonzero series in F⟪X⟫. Consider any word w
such that [w]A′ 6= 0. Then consider the automaton A that accepts only the word w and let
A1, . . . , An be the transition matrices of the automaton A for the variables x1, . . . , xn. It can
be easily observed that A′(A1, . . . , An) is well-defined and a nonzero matrix whose top right-
most entry is [w]A′ [see [4] for details]. Since whenever A′ converges on a point, so does g, we
conclude that g(A1, . . . , An) 6= 0, which also implies that f(α1It −A1, . . . , αnIt −An) 6= 0.
Hence f is nonzero in F⦓X⦔. C

Now the proof of the lemma follows. J
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Proof of Theorem 1. We now present the algorithms for white-box and black-box models.

The White-Box Case Let r be the total number of linear forms or inverses of linear forms
in A. Clearly, r is bounded by s. Using Lemma 11, we reduce the problem of deciding
whether the ABP A is zero in F⦓X⦔ to the problem of deciding whether the automaton
A′ is computing a zero series or not in F⟪X⟫. From Lemma 11, A′ is of size W which is at
most 2s. Now invoking Theorem 9, we conclude that A′ 6≡ 0 if and only if there is a word
of length at most W − 1 which has nonzero coefficient in A′. Consider the corresponding
transition matrix MA′ of A′. For each ` ≤W − 1, we construct the branching program
B(`) = uTM `

A′v where u,v are the vectors corresponding to the initial states and final
states respectively. As A′ does not have any ε-transitions, B(`) computes words in A′
of length exactly `. It suffices to check for each ` ≤ W − 1, whether B(`) computes
an identically zero polynomial. The identity testing algorithm is obtained by applying
Theorem 7 on the ABPs B(`). The running time of the algorithm is clearly bounded by
poly(n, s).

The Black-Box Case We now present a deterministic quasi-polynomial time black-box
algorithm. Let r be the total number of linear forms or inverses of linear forms in A.
Clearly, r is bounded by s. Lemma 10 yields a set S of size nr + 1 such that for some
α ∈ S, the linear shift xj 7→ αj − xj ensures that for every edge label, each of the r many
L−1 in A, the linear form L has a nonzero constant term. Let us fix such α ∈ S. From
the proof of Lemma 11, we conclude that there is an automaton A′ of size at most 2s
such that A is zero in F⦓X⦔ if and only if A′ computes a zero series in F⟪X⟫.
Let A′(`) denotes the series computed by A′ truncated to the words of length at most `.
Let W = 2s. Now, by Theorem 9, A′ 6≡ 0 if and only if A′(W−1) 6≡ 0. We now discuss the
effect of HW 2,W−1,n, hitting set from Theorem 8 on A′. It is well known from the proof
of Theorem 8 that for each (h1, . . . , hn) ∈ HW 2,W−1,n, each hi is a W ×W matrix of the
following form [9]:

hi =


0 a1 0 · · · 0
0 0 a2 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 aW−1
0 0 · · · 0 0

 .

Using the shape of the matrices hi, it can be easily checked that for all words w ∈ X∗

of length at least W , w(h1, . . . , hn) = 0. Hence, evaluating A′ at some (h1, . . . , hn) ∈
HW 2,W−1,n is equivalent to evaluating A′(W−1) at (h1, . . . , hn). As already discussed
in the previous section for white-box case, we can construct the branching program
B(`) = uTM `

A′v computing words of length exactly ` in A′, for each ` ≤ W − 1,
where MA′ is the corresponding transition matrix of automaton A′ and u,v are the
vectors corresponding to the initial states and final states respectively. Hence, A′(W−1)

can be computed by an ABP of width at most W 2. Therefore, A′ computes a zero
series if and only if for each (h1, . . . , hn) ∈ HW 2,W−1,n, A′(h1, . . . , hn) outputs a zero
matrix. Hence, by evaluating A on (α1IW − h1, . . . , αnIW − hn) for each α ∈ S and
(h1, . . . , hn) ∈ HW 2,W−1,n, we can decide A is zero in F⦓X⦔ or not. J

4 Invertible Image of Noncommutative ABPs

Let us first fix some notation for the subsequent sections. Sd denotes the set of permutations
{σ : [d] → [d]}. For a degree-d word m = xi1 · · ·xid ∈ X∗, we define σ-permuted word
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mσ = xiσ(1) · · ·xiσ(d) . For a degree-d homogeneous noncommutative polynomial g ∈ F〈X〉,
gσ is defined as gσ =

∑
m∈supp(g)[m]g ·mσ. For each j ∈ {0, 1, . . . , d− 1}, σj ∈ Sd denotes

the permutation that cyclically rotates a monomial right to left by j steps. As a permutation
σj = (j + 1, j + 2, . . . , d, 1, . . . , j).

As preparation, we show in the following lemma (proof omitted) that each cyclic shift of a
noncommutative homogeneous ABP of size s can be computed by an ABP of size polynomial
in s.

I Lemma 14. Let A be a homogeneous ABP of size s computing a noncommutative polynomial
g ∈ F〈X〉 of degree d. For each j ∈ [d− 1], there is a O(s2) size ABP computing gσj .

Proof of Theorem 2. We first explain the proof for homogenous degree d ABPs. For each
i ∈ [n] construct the following matrices

Mi =


0 yi,1 0 · · · 0
0 0 yi,2 · · · 0
...

...
...

. . .
...

0 0 0 · · · yi,(d−1)
yi,d 0 0 · · · 0


d×d

. (1)

It is possible to view these matrices as the transition matrices of a labeled auto-
maton. We observe that for a monomial m = xi1xi2 · · ·xid , the matrix m(M1, . . . ,Mn)
is a diagonal matrix. Moreover, for any j ∈ [d], the (j, j)th entry is given by
(yi1,jyi2,j+1 . . . yid−(j−1),d)(yid−(j−2),1 . . . yid,j−1). Since Y is a set of commutative variables,
the above is same as SM(mσd−(j−1)) 4.

Thus, for any homogeneous degree d polynomial f , by linearity we get that f(M1, . . . ,Mn)
is also a diagonal matrix and the (j, j)th entry is SM(fσd−(j−1)).

The image of the polynomial f is invertible on a point (M1, . . . ,Mn), if and only if
det(f(M1, . . . ,Mn)) 6= 0. Further if the shape of each Mi is as described in Equation 1, we
have det(f(M1, . . . ,Mn)) =

∏d−1
j=0 SM(fσj ). Note that, if the noncommutative polynomial f

is nonzero then for each σj ∈ Sd, fσj is also nonzero. Recall that, for any f , f is nonzero if
and only if SM(f) is nonzero. Hence, given a nonzero polynomial f , det(f(M1, . . . ,Mn)) is a
nonzero polynomial as every diagonal entry evaluates to a nonzero commutative polynomial.

Since fσ0 has an ABP of size s, each cyclic shift fσj has an ABP of size O(s2) by Lemma
14. Therefore, the set-multilinearization SM(fσ0) has an ABP of size s, and each SM(fσj )
has an ABP of size O(s2), over the same variable partition Y = Y1 t Y2 t · · · t Yd. It is
obtained by making the input ABP set-multilinear i.e. by replacing each xi variable in the
jth layer by yi,j .

Now we briefly discuss how to use a generator of Forbes-Shpilka [9] for set-multilinear
ABPs to complete the algorithm. Let G : F 7→ Fnd be the hitting set generator for the set-
multilinear algebraic branching programs of size O(s2) over the variable set Y = Y1t . . .tYd
with d layers promised by the result in [9]. The map G : z 7→ (p1,1(z), p1,2(z), . . . , pn,d(z)) is a
polynomial map where each pi,j is of degree at most D = (snd)O(log d) with the property that
SM(fσj ) ◦ G is nonzero univariate if and only if fσj 6≡ 0. Thus, to prove that f(M1, . . . ,Mn)

4 For any homogeneous noncommutative polynomial f , recall the definition of SM(f) from Section 2.
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is invertible, it suffices to show

d−1∏
j=0

(SM(fσj ) ◦ G) =

d−1∏
j=0

SM(fσj )

 ◦ G = det(f(M1, . . . ,Mn)) ◦ G 6≡ 0. (2)

Now we note that det(f(M1, . . . ,Mn)) ◦ G(z) is a univariate of degree at most d2D. Thus
to test equation (1) for identity, it suffices to go over d2D + 1 distinct values of z. More
precisely, we choose distinct field elements α1, . . . , αd2D+1 ∈ F and construct the hitting set,

H = {(p1,1(αi), . . . , pn,d(αi))|i ∈ [d2D + 1]},

In case, the given ABP of degree d is not homogeneous, then the substitution xi = tMi is
performed where t is a commutative variable. The words (monomials) of degree i produce
terms with t-degree i. Now det(f(tM1, tM2, . . . , tMn)) will have a term with t-degree d2

which is produced by the identity permutation and no other permutations can produce a
term of same t-degree 5. Thus using Forbes-Shpilka generator G, we know that for some
z = α0, the polynomial det(f(tM1, tM2, . . . , tMn)) ◦ G|z=α0 is a nonzero univariate in t of
degree d2 and hence it suffices to try the d2 + 1 distinct substitution for t such that the final
output becomes nonzero on one such substitution t = t0. J

I Remark 15. In the white-box case (when f is given by an ABP) we can find a matrix
substitution (M1,M2, . . . ,Mn) in deterministic polynomial time, applying the theory of
matrix pencils as developed in [11, 12]. The proof will appear in the full version of the paper.

5 Trace of Image of an Algebraic Branching Program

We now prove Theorem 5. By the following lemma it suffices to show it for homo-
geneous ABPs. Recall that the image of f over matrix algebra Mk(F) is defined as
Imgk(f) = {f(M1, . . . ,Mn) | (M1, . . . ,Mn) ∈ (Mk(F))n}, and Trace(Imgk(f)) is the set
of traces of the matrices in Imgk(f). Use M to denote the matrix tuple (M1, . . . ,Mn). We
say Trace(Imgk(f)) = {0} if and only if Trace(f(M)) = 0 for each M ∈ (Mk(F))n.

I Lemma 16. Let f ∈ F〈X〉 be a noncommutative polynomial of degree d, and fi be its homogen-
eous degree-i component for each i ∈ {0, 1, . . . , d}. Then for all k ∈ N, Trace(Imgk(f)) = {0}
if and only if Trace(Imgk(fi)) = {0} for each i.

Proof. Consider the substitution xi 7→ z · xi for a commuting variable z. We can write

Trace(f(zM1, . . . , zMn)) = Trace

(
d∑
i=1

fi(M)zi
)

=
d∑
i=1

Trace(fi(M))zi.

If Trace(Imgk(fi)) = {0} for each i ∈ [d], then clearly Trace(Imgk(f)) = {0}. Sup-
pose Trace(Imgk(fi)) 6= {0} for some i. Then there is a matrix tuple M such that
Trace(f(zM1, . . . , zMn)) is a nonzero univariate in z. Hence, there is a substitution z = α

for which Trace(f(αM1, . . . , αMn)) 6= 0 which shows that Trace(Imgk(f)) 6= {0}. J

Proof of Theorem 5. By Lemma 16 and the fact that homogeneous components can be
extracted efficiently both in the black-box and in the white-box setting, we can assume the
given ABP is homogeneous of degree d. First we prove that if Imgk(f) is trace zero for some
k ≥ d, then the coefficients of f have the following symmetry property.

5 Because the non-diagonal entries of the output matrix contain the terms with t degree ≤ d− 1.
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I Lemma 17. For a homogeneous polynomial g ∈ F〈X〉 of degree d, Trace(Imgk(g)) = {0} at
any dimension k ≥ d, if and only if for every monomial m we have

∑
σ∈Cd [mσ]g = 0, where

Cd = {σ0, σ1, . . . , σd−1} is the set of all d cyclic shift permutations.

Proof. Let Md be the set of all monomials in g. Let M ′d denote a maximal subset of Md

constructed as follows: Group the monomials in Md such that monomials in the same group
are cyclic shifts of each other. Now define M ′d by taking one monomial from each such group.
For any matrix tuple M , by the cyclic property of trace, for each σ ∈ Cd, Trace(mσ(M)) is
same. Hence, we may write,

Trace(g(M)) =
∑
m∈Md

[m]g · Trace(m(M)) =
∑
m∈M ′

d

(∑
σ∈Cd

[mσ]g
)
· Trace(m(M)).

If for every monomial m we have
∑
σ∈Cd [mσ]g = 0 then Trace(Imgk(g)) = {0} for each k.

For the converse direction, suppose there is a monomial m such that
∑
σ∈Cd [mσ]g 6= 0. Let

m = xi1xi2 . . . xid . Construct an automaton that accepts only the cyclic shifts of m. Below,
we give an illustrative example for d = 6.

1 2 3 4 5 6

xi1 xi2 xi3 xi4 xi5

xi6

Figure 4 Example of the automata when d = 6.

The permutation σ0 is the identity permutation. When the start state and final state
are both j ∈ [d], then only the word mσj−1 = xijxij+1 · · ·xidxi1xi2 · · ·xij−1 is accepted (also
note that if start state and final state are different then no word of length d is accepted). The
transition of the automata gives us d× d matrices Mxi1

, . . . ,Mxid
where Mxij

(k, `) = 1 if
k = j and ` = j+1( (mod d)) and 0 otherwise. Substituting xij = Mxij

and settingMxt = [0]
if xt 6∈ {xi1 , xi2 . . . xid}, we observe that the matrix g(Mx1 , . . . ,Mxn) is a diagonal matrix
and the (j, j)th entry is [mσj−1 ]g, and thus Trace(g(Mx1 , . . . ,Mxn)) =

∑
σ∈Cd [mσ]g 6= 0. J

As a corollary of Lemma 17, we obtain the following.

I Corollary 18. For all matrix substitution of dimension k ≥ d, Trace(Imgk(g)) = {0} if and
only if

∑
σ∈Cd g

σ ≡ 0.

Proof. Observe that gσ =
∑
m[m]g · mσ. Hence

∑
σ∈Cd g

σ =
∑
σ∈Cd

∑
m[m]g · mσ =∑

m(
∑
σ∈Cd [mσ]g) ·m. Then the proof follows from Lemma 17. J

Now we would like to check if the input polynomial f computed by the given ABP has
the above property. It turns out that if the input polynomial f is given as white-box, a
combination of Lemma 14 and Theorem 7 can easily yield a deterministic polynomial-time
algorithm.

The White-Box Case

By Lemma 14 we see that, for each σ ∈ Cd, fσ can be computed by an algebraic branching
program of size O(s2) and hence f̂ =

∑
σ∈Cd f

σ can be computed by an algebraic branching
program of size poly(s, d). Given the algebraic branching program A the algorithm computes
the algebraic branching program Â =

∑
σ∈Cd f

σ using Lemma 14 and runs the algorithm of
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Raz and Shpilka [14] on the ABP Â and outputs trace zero if Â ≡ 0. The correctness of the
algorithm follows from Lemma 17, and the run time of the algorithm is poly(n, s, d).

The Black-Box Case

The main idea is to obtain black-box access to SM(f̂) where f̂ =
∑
σ∈Cd f

σ (following notation
of Corollary 18). Thereafter, one can use the standard hitting set [9] for set-multilinear
ABPs over the variable partition Y = Y1 tY2 t · · · tYd. Now, for each i ∈ [n], we construct
the d× d matrix Mi as shown in the proof of Theorem 2 (If k > d, we adjust each Mi by
padding zeros).

I Lemma 19. Trace(f(M1, . . . ,Mn)) = SM(f̂).

The proof of the lemma follows quite easily. it will be given in the full version of the paper.
Using Lemma 14, the ABP size of f̂ is at most poly(s, d). Also we conclude that SM(f̂)

has a set-multilinear ABP of depth d in the variable partition Y1 tY2 t · · · tYd of size at
most poly(s, d). Now the algorithm substitutes yi,j from the hitting set of the set-multilinear
ABPs of size s over the variable partition Y1 t Y2 t · · · t Yd with d many layers [9] and
evaluates the polynomial on the matrices Mi and checks whether the trace of the output
matrix is always zero or not. The correctness follows from Corollary 18 and the run time
follows from Theorem 8 when applied to the set-multilinear case. J

I Corollary 20. Let f be a degree-d noncommutative polynomial in F〈X〉 computed by a
size s ABP. For k ≥ d, when f is given by an ABP (the white-box case) we can check in
deterministic polynomial time which of the four cases of the Brešar-Klep theorem holds for
f . For k ≥ d, when f is given only by black-box access, we can check all the possibilities in
deterministic quasi-polynomial time.

Proof. If k ≥ d, by the Amitsur-Levitzki theorem a nonzero f is not an identity for Mk(F).
To rule out the second case notice that if f is a central polynomial for Mk(F) then g = zf−fz
is an identity for Mk(F) where z is a new noncommutative variable. This is also not possible
by Amitsur-Levitzki theorem as degree of zf − fz is d+ 1 and as a nonzero polynomial it
cannot vanish on Mk(F) as k ≥ (d + 1)/2 + 1. If Imgk(f) is trace zero over Mk(F), then
the span of the image of f can not be Mk(F) which can be checked efficiently by Theorem
5. Otherwise, if Imgk(f) is not trace zero over Mk(F), its span must be the entire algebra
Mk(F) as promised by the Brešar-Klep theorem. J
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