
New Algorithmic Results using Noncommutative
Algebraic Complexity

By

Abhranil Chatterjee

MATH10201604004

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

May, 2022

Homi Bhabha National Institute
Recommendations of the Viva Voce Committee

As members of the Viva Voce Committee, we certify that we have read the disser-

tation prepared by Abhranil Chatterjee entitled “New Algorithmic Results using

Noncommutative Algebraic Complexity” and recommend that it may be accepted as

fulfilling the thesis requirement for the award of Degree of Doctor of Philosophy.

Date: May 11, 2022
Chairperson - Meena Mahajan

Date: May 11, 2022
Guide/Convenor - V. Arvind

Date: May 11, 2022
Co-guide - Partha Mukhopadhyay

Date: May 11, 2022
Examiner - Jayalal Sarma

Date: May 11, 2022
Member 1 - Saket Saurabh

Date: May 11, 2022
Member 2 - Vikram Sharma

Date: May 11, 2022
Member 3 - Venkatesh Raman

Final approval and acceptance of this thesis is contingent upon the candidate’s

submission of the final copies of the thesis to HBNI.

We hereby certify that we have read this thesis prepared under our direction and

recommend that it may be accepted as fulfilling the thesis requirement.

Date: May 11, 2022

Place: Chennai Co-guide Guide

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the

Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgement of source is made. Requests for permission

for extended quotation from or reproduction of this manuscript in whole or in part

may be granted by the Competent Authority of HBNI when in his or her judgement

the proposed use of the material is in the interests of scholarship. In all other

instances, however, permission must be obtained from the author.

Abhranil Chatterjee

tzbmromib . Chatterjee

DECLARATION

I hereby declare that the investigation presented in the thesis has been carried out

by me. The work is original and has not been submitted earlier as a whole or in part

for a degree / diploma at this or any other Institution / University.

Abhranil Chatterjee

tfomromcb Chattooga

LIST OF PUBLICATIONS ARISING FROM THE THESIS

Journals

1. [ACDM20b] On Explicit Branching Programs for the Rectangular

Determinant and Permanent Polynomials, V. Arvind, Abhranil Chatter-

jee, Rajit Datta, and Partha Mukhopadhyay, Chicago Journal of Theoret-

ical Computer Science, 2020, Vol. 2020.

2. [ACDM22] Fast Exact Algorithms Using Hadamard Product of

Polynomials, V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha

Mukhopadhyay, Algorithmica, 2022, Vol. 84, p.436-463.

Conferences

1. [ACDM19a] E�cient Black-Box Identity Testing for Free Group Al-

gebras, V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopad-

hyay, In Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22,

2019, Massachusetts Institute of Technology, Cambridge, MA, USA, pages

57:1–57:16, 2019.

2. [ACDM19c] Fast Exact Algorithms Using Hadamard Product of

Polynomials, V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha

Mukhopadhyay, In Arkadev Chattopadhyay and Paul Gastin, editors, 39th

IARCS Annual Conference on Foundations of Software Technology and Theoret-

ical Computer Science, FSTTCS 2019, December 11-13, 2019, Bombay, India,

volume 150 of LIPIcs, pages 9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2019.

3. [ACDM19b] On Explicit Branching Programs for the Rectangular

Determinant and Permanent Polynomials, V. Arvind, Abhranil Chatter-

jee, Rajit Datta, and Partha Mukhopadhyay, In Pinyan Lu and Guochuan

Zhang, editors, 30th International Symposium on Algorithms and 67Computa-

tion, ISAAC 2019, December 8-11, 2019, Shanghai University of Finance and

Economics, Shanghai, China, volume 149 of LIPIcs, pages 38:1–38:13. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

4. [ACDM20a] A Special Case of Rational Identity Testing and the

Brešar-Klep Theorem, V. Arvind, Abhranil Chatterjee, Rajit Datta, and

Partha Mukhopadhyay, In Javier Esparza and Daniel Krá̌l, editors, 45th

International Symposium on Mathematical Foundations of Computer Science

(MFCS 2020), volume 170 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 10:1–10:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-

Zentrum für Informatik.

Abhranil Chatterjee
tfrbmromibochattonipo

ACKNOWLEDGEMENTS

It was 2017, it was the second semester of my coursework at IMSc. I was yet to decide

on my research area. For the first time, I was introduced to the Complexity Theory

course and I found it interesting. Coincidentally, a workshop on recent progress on

algebraic complexity was organized at IMSc at the same time. It was enough to

make my mind, I wanted to be a complexity theorist.

I am fortunate enough to have Arvind as my advisor. I was scared to discuss with an

omniscient person with my limited knowledge. I told him that I would like to read

for the first year before starting my research journey. I remember the exact words

he said to me: “Don’t think that I am sitting at the top of the mountain and you will

climb there. Research is a continuous journey and if you find something you don’t

know, just learn it!” Those simple words boosted my confidence. Thank you Arvind

for having faith in me. He is more than an academic advisor to me. His clarity of

thinking, way of attacking problems, deep insights into the subject, and his ability

to switch instantly between academic and non-academic subjects (being the Director

of the institute, he had to do that frequently!) have enkindled me greatly.

Secondly, I wish to thank Partha Mukhopadhyay. He is o�cially my co-guide, but

more than that he is like an elder brother to me who is always there for you with any

help, whether it is academic or not. Thank you Partha for all your support. We spent

a lot of hours together discussing a wide range of topics. It ranges from the recently

published paper at eccc to the taste of Biriyani. His continuous encouragement is

instrumental in my research.

I am really grateful to have Rajit, my gurubhai as my collaborator. Working together

with Arvind, Partha and Rajit have been a great experience. It felt like a family,

all of us spending time together. We frequently had a heated argument in the o�ce

followed by some poor jokes. These people made my Ph.D. days very much enjoyable.

I am really indebted to Meena, Venkatesh, Jam, Saket, Vikram, Kamal, CRS — all

the faculty members at IMSc, for their teaching, continuous support, and for providing

a nice academic environment. My sincere thanks to Meena for her encouragement,

many interesting discussions, and organizing seminar series even during the pandemic.

I would like to thank all the members at IMSc. I am fortunate enough to have some

nice friends at IMSc and to spend time with them. I won’t be able to mention all

of you, but you are really special to me. My sincere thanks to Ashwin and Gaurav,

spending time with these lovely idiots was really special.

I have spent a lot of time at CMI. I would like to thank all the members of CMI for

their hospitality.

I would like to thank my parents and all my family members. This journey would

have been impossible without their love and blessings, especially during the pandemic.

Most importantly, I would like to thank Ananya, my better half. Her continuous

support gave me confidence in the tough times. Thank you for always standing by

my side. Finally, I am thankful to my son, Anukameen, without whom this thesis

would have been submitted six months ago!

Contents

Summary i

List of Figures iii

1 Introduction 1

2 Background on Noncommutative Algebraic Complexity 19

3 Image of Noncommutative Polynomials and Applications to Ratio-

nal Identity Testing 37

3.1 Invertible Image of Noncommutative ABPs 38

3.2 Trace of Image of Noncommutative ABPs 44

3.3 Special Instances of Rational Identity Testing 49

4 E�cient Identity Testing of Free Group Algebras 61

4.1 An Amitsur-Levitzki Type Theorem 65

4.1.1 Black-box identity test . 72

4.1.2 Reconstruction of sparse expressions 72

4.2 Exponential Degree and Exponential Sparsity 73

4.3 Over Small Finite Fields . 81

5 Fast Exact Algorithms using Hadamard Product of Polynomials 83

5.1 Hadamard Product Framework . 89

5.2 The Sum of Coe�cients of Multilinear Monomials 93

5.2.1 Some Applications . 96

5.3 Multilinear Monomial Detection . 102

5.4 Deterministic Algorithms for Depth Three Circuits 107

5.5 A Comparison to Related Works . 109

6 On Explicit Branching Programs for the Rectangular Determinant

and Permanent Polynomials 113

6.1 Explicit construction of ABPs for S⇤
n,k

and Noncommutative Rectan-

gular Permanent . 115

6.2 Explicit ABP construction for Noncommutative Determinant and

Related Polynomials . 121

6.3 Hardness of Rectangular Determinant Over Matrix Algebras 127

6.3.1 Computing over Small Dimensional Algebras 131

7 Conclusion 135

Bibliography 139

Summary

Algebraic Complexity is the study of the complexity of computing multivariate

polynomials where the complexity of a polynomial is the number of arithmetic

operations such as additions, and multiplications required to compute it. The broad

goal of this thesis is to explore the power of noncommutative computation, a

subarea of algebraic complexity. We present new algorithmic results using tools and

techniques from noncommutative algebraic complexity in this thesis.

In the first part of the thesis, we focus on the image of noncommutative polynomials

in various general settings. We explore the algorithmic questions centered around

the invertibility and the trace of the image of a noncommutative polynomial. We

show that we can leverage ideas from algebraic automata theory to answer these

questions. We also study the image of free group algebra functions. It is a

generalization of noncommutative polynomials where we allow

noncommuting variables as well as their inverses as inputs. We obtain e�cient

identity testing algorithms for such functions.

The second part of the thesis shows new algorithmic and arithmetic circuit upper

bound results, mainly in the context of parameterized complexity, that utilizes new

ideas from the noncommutative computation. We address two well-studied

algorithmic problems in this area, multilinear monomial detection, and multilinear

monomial counting, and show their connection to the computation of

noncommutative Hadamard product. This connection leads to a new approach

i

called symmetrization that yields faster algorithms for these problems. Finally, we

study new upper bound results for the noncommutative rectangular permanent, the

noncommutative rectangular determinant, and some related polynomials. It

complements the rank-based lower bound results for the corresponding polynomials.

Overall this thesis makes some progress in our understanding of the power of

noncommutative algebraic complexity.

ii

List of Figures

2.1 An arithmetic circuit computing x2
1x2 + x1x2

2 + x1x2 + x2
2 + x2 20

2.2 An ABP computing 10x2
1 � 18x2

2 � 4x1x2 + 46x2x1 21

3.1 Example of the automata when d = 6. 47

3.2 Edge Labels having linear form and inverses 53

3.3 Edge Labels rewritten as ⇤-rational expression after applying the shift

xi 7! 1� xi. 53

3.4 Edge Labels replaced by an appropriate automaton. 54

4.1 The transition diagram of the automaton for xi variables for degree-4

functions . 69

4.2 The transition diagram of the automaton for x0 variables for degree-4

functions . 71

4.3 The transition diagram of the automaton 71

4.4 The transition diagram of the automaton 76

4.5 The transition diagram of the automaton at Encode stage 77

4.6 The transition diagram of the automaton at Skip stage 78

iii

iv

Chapter 1

Introduction

Theoretical computer science is, broadly speaking, the study of computation in

di↵erent computational models at a suitable level of abstraction that separates it

from the messy details of real-world computation. One ubiquitous theoretical model

of computation is the Turing machine.

Computational complexity theory is a prominent subfield of theoretical computer

science that deals with e�cient computation. There are di↵erent measures of

e�cient computation, depending on the problem and the computational model

being studied and the broad goal is to minimize the computational resources

required to solve a given problem.

To understand the computational complexity of a problem, we seek answers to the

following questions: (a) what is the most e�cient algorithm to solve it? (b) what

makes the problem hard or what is the lower bound on the resources required to

solve the problem? These two objectives lead to classifying problems into di↵erent

complexity classes according to the required resources and studying the relative

power of these classes.

The running time of an algorithm for a given problem is the most natural and

1

well-studied measure of e�ciency, where the algorithm’s running time is bounded by

a function T (n) where n is the input size (T (n) is the number of steps taken by the

algorithm, where the notion of a single “step” naturally depends on the model).

In practice, the only known algorithms for many natural optimization problems of

interest take exponential time because they essentially solve the problem by

brute-force search, it is natural to consider polynomial-time bounded algorithms as

e�cient. Indeed, this turns out to be a robust notion of e�ciency as natural models

of computation can be simulated on each other with at most a polynomial slow

down. This leads to the definition of the complexity class P, the class of decision

problems1 solvable in polynomial time in a Turing machine.

It turns out that many of the natural optimization problems of interest have the

property that the problem instances have e�ciently verifiable solutions. It leads to

the definition of complexity class NP, the class of decision problems whose instances

have polynomial-size solutions/certificates that can be verified in polynomial time in

a Turing machine. Clearly, P ✓ NP. The central open problem in computational

complexity is P
?
= NP or not, independently appeared in the works of Cook [Coo71]

and Levin [Lev73]. However, even after five decades, the solution remains elusive.

They also identified the “hardest” problems inside the class NP. This was a

breakthrough discovery leading to the notion of NP-completeness that gave a

hardness theory (an explanation for why known algorithms for these problems are

exponential-time bounded). This hardness theory, complementing the quest for

polynomial-time algorithms is the foundation of modern computational complexity.

In this thesis, we focus on algebraic complexity theory, a subfield of complexity

theory, as we discuss next.

1
Considering decision problems rather than optimization problems is a convenient idea that

helps with conceptual clarity in understanding hardness of computation: NP-completeness and

other notions.

2

Algebraic Complexity Theory

Multivariate polynomials are fundamental objects of study in mathematics.

Algebraic Complexity is the study of the complexity of computing multivariate

polynomials. The complexity of a polynomial is the number of basic arithmetic

operations such as additions, and multiplications required to compute it. The

natural models for computing polynomials are arithmetic circuits, arithmetic

formulas, and algebraic branching programs (formally defined in Chapter 2).

To understand the algebraic complexity of polynomials, polynomial families are

classified into complexity classes according to their size of arithmetic circuits. The

study of algebraic complexity was initiated by Valiant in his seminal paper [Val79]

in which he developed a theory that parallels the NP-completeness theory, now in

the setting of polynomials. In Valiant’s theory, instead of decision problems we

consider polynomial families {fn}n, where each fn is an n-variate polynomial over F

of poly(n) degree.

It is easy to see from a simple counting argument that the number of monomials in

an n-variate polynomial of degree d is at most
�
n+d

d

�
. Therefore any n-variate

polynomial of degree poly(n) trivially has an arithmetic circuit of size exponential in

n by writing it as a sum of monomials. It is natural to consider polynomial-size

bounded arithmetic circuits as e�cient computation of a polynomial. This leads to

the definition of the complexity class VP, the algebraic analog of the class P, the

class of polynomial families {fn}n, where each fn is an n-variate polynomial over F

of poly(n) degree which is computable by an arithmetic circuit of size poly(n). For

example, the determinant polynomial and the elementary symmetric polynomial are

in VP. See [Sap15] for a detailed exposition.

It turns out that many polynomials of interest, for example, the permanent

polynomial, are not known to have small circuits. It leads to the definition of

3

complexity class VNP, the algebraic analog of the class NP2 in the following way. A

class of polynomial family {fn} is in the class VNP if there exists a polynomial

family {gn} in VP such that, for some polynomial p(n),

fn(x1, . . . , xn) =
X

(a1,...,ap(n))2{0,1}p(n)

gn+p(n)(x1, . . . , xn, a1, . . . , ap(n)).

Clearly, VP ✓ VNP. The fundamental question in algebraic complexity is to separate

VP and VNP. The permanent polynomial plays an important role as it is identified

as the “hardest” polynomial family inside the class VNP i.e. the VNP-complete

polynomial family. Therefore, proving that the permanent polynomial does not have

an arithmetic circuit of polynomial-size will separate VP and VNP.

The best known lower bound on general circuits for explicit polynomials in VP is

due to Baur and Strassen [BS83] who have shown an ⌦(n log n) lower bound for the

polynomial
P

n

i=1 x
n

i
. Unfortunately, no better lower bounds are known still. This

absence of progress has led to the study of lower bounds for restricted models such

as monotone circuits, multilinear circuits, bounded depth circuits, and

noncommutative circuits. For more details on the lower bound results, see the

survey of [Sap15].

A fundamental algorithmic problem, closely related to proving arithmetic circuit

lower bounds, is Polynomial Identity Testing (PIT): given an arithmetic circuit as

input, the problem is to decide whether or not it computes the identically zero

polynomial. This can be studied both in the black-box model where the algorithm

can access the circuit only by evaluating it at di↵erent inputs or in the white-box

model where the algorithm has the circuit as input. A well-known and simple

randomized black-box algorithm for the problem is by evaluation at a random input

2VNP is algebraic analog of the class #P which is the class of the counting problems associated

with the decision problems in the class NP: counting the number of solutions/certificates for input

instances.

4

due to the Polynomial Identity Lemma [DL78, Zip79, Sch80]. No

subexponential-time deterministic algorithm is known except for some special cases.

Devising an e�cient deterministic algorithm for PIT for general circuits appears to

be a challenging problem in the field. Relatedly, derandomization of the

above-mentioned simple randomized algorithm has interesting consequences in

proving lower bounds [KI04, Agr05]. See the survey of [SY10] for a detailed

exposition on deterministic PIT algorithms and their connection to proving lower

bounds.

Noncommutative Computation

The complexity-theoretic study of noncommutative computation was initiated by

Nisan in his seminal paper [Nis91]. In the arithmetic circuit model for

noncommutative computation, the arithmetic operations are addition and

multiplication. The input gates are labeled by indeterminates x1, x2, . . . , xn or

scalars from a prescribed field F. Multiplication gates respect the order of their

inputs. That is, for each i, j 2 [n], such that i 6= j, xixj 6= xjxi. Such circuits

compute noncommutative polynomials. These are elements of the free algebra

Fhx1, x2, . . . , xni, where the xi are free noncommuting variables. To illustrate how

commutativity makes a di↵erence, consider the polynomial x2
1 � x2

2. If x1 and x2

commute, the polynomial can be computed as (x1 + x2)(x1 � x2) using one

multiplication only. However, we require at least two multiplications if x1 and x2 do

not commute.

Analogous to commutative arithmetic computation, the central questions are to

show circuit size lower bounds for explicit noncommutative polynomials and the

derandomization of polynomial identity testing (PIT) for noncommutative circuits

(or subclasses of circuits). Surprisingly, for general circuits no better results are

known than in the commutative setting. There is, however, nontrivial progress for

5

polynomials computable by noncommutative ABPs. Nisan [Nis91] has shown an

explicit polynomial that has a linear size noncommutative circuit but requires a

noncommutative algebraic branching program (and formula) of exponential size,

thus separating noncommutative ABPs and circuits.

Polynomial identity testing (PIT) for noncommutative models of computation is

motivated by the hope that e�cient deterministic PIT algorithms should be easier

than their commutative counterparts. Indeed, Raz and Shpilka [RS05] have shown a

deterministic polynomial-time PIT algorithm for noncommutative ABPs in the

white-box model. A quasi-polynomial time derandomization is also known for the

black-box model [FS13]. However, we do not have a polynomial-time, even

randomized, PIT algorithm for general polynomial-sized noncommutative circuits.

The randomized polynomial-time PIT algorithm for noncommutative circuits

computing a polynomial of polynomially bounded degree [BW05] follows from the

Amitsur-Levitzki theorem [AL50] which states that a nonzero polynomial

p 2 Fhx1, . . . , xni of degree < 2k cannot be an identity for the ring Matk(F) of k⇥ k

matrices over F. It is also known [AJMR17] that a nonzero noncommutative

polynomial does not vanish on matrices of dimension logarithmic in the sparsity of

the polynomial. This yields a randomized polynomial-time identity test for

noncommutative circuits computing polynomials of exponential degree and

exponential sparsity.

Rational Identity Testing

Hrubeš and Wigderson [HW15] initiated the study of noncommutative computation

with inverses. These computations produce noncommutative rational functions

which are elements of the free skew-field. They introduce the rational identity testing

(RIT) problem [HW15]: Given a noncommutative rational formula, determine if it

is zero in the free skew-field of noncommutative rational functions. By definition, a

6

rational expression r computes the zero function in the free skew-field if and only if

r has a nonempty domain of definition, and for each d 2 N and substitution from

Matd(F), the expression evaluates to the zero matrix if it is defined. Using

techniques based on operator scaling and invariant theory, the RIT problem for

noncommutative rational formulas is shown [GGOW16, IQS18] to be in

deterministic polynomial time in the white-box model. It is in randomized

polynomial time in the black-box model [DM17].

The complexity of RIT for general noncommutative rational circuits remains open.

Only an exponential-time upper bound is known. In particular, even for rational

circuits of inversion height one (inversion height of a circuit is the maximum number

of inverse gates present in any input to output path in the circuit [HW15]), we do

not know a subexponential-time randomized algorithm.

This Thesis

This thesis is, broadly, an exploration of noncommutative arithmetic computation

from an algorithmic perspective. We present new algorithmic results that use tools

from algebraic complexity theory, especially noncommutative computation. We now

briefly overview the results.

A. Image of Noncommutative Polynomials and Applications to Rational

Identity Testing

For the algebra Matk(F) of k ⇥ k matrices over field F, the image set of a

noncommutative polynomial f 2 Fhx1, . . . , xni is defined as

Imk(f) = {f(M1, . . . ,Mn) : (M1, . . . ,Mn) 2 Matn
k
(F)} for some k. A polynomial

identity for the matrix algebra Matk(F) is a noncommutative polynomial f such

that Imk(f) contains only the zero matrix. The PIT problem of noncommutative

7

polynomials is closely related to the study of image of noncommutative polynomials.

In this thesis, we study the invertibility and span of the image set of

noncommutative polynomials. We study the following problem first: Given a

noncommutative ABP, find a matrix substitution such that the output matrix is

invertible. Our goal is to obtain a deterministic subexponential-time algorithm for

this problem. Interestingly, Forbes and Shpilka [FS13] have shown a deterministic

quasi-polynomial-time algorithm to find a matrix substitution such that the output

matrix is nonzero. Indeed, they show a hitting set for noncommutative ABPs. A

hitting set for a class of noncommutative polynomials is a set of matrix tuples such

that for each nonzero polynomial in that class, there exists a matrix substitution

such that the output matrix is nonzero. However, the output matrix obtained from

the Forbes-Shpilka hitting set is always singular. We ask for a stronger notion of

hitting set, which we define as an invertible hitting set that ensures for each nonzero

polynomial there exists a matrix substitution such that the output matrix is

invertible. It is not hard to see that the existence of an invertible hitting set follows

from Amitsur’s theorem on universal division algebra [Ami66] which promises that if

f is nonzero on k ⇥ k matrices then f has invertible matrices in its image. We show

the following:

Theorem. There exists an invertible hitting set H ✓ Matn
d
(F) of size sO(log d) for

n-variate polynomials of degree-d computable by noncommutative ABPs of size s.

Moreover, we can construct it in deterministic sO(log d)-time.

Another algorithmic question related to the linear span of the image of

noncommutative polynomials is motivated by an interesting theorem due to Brešar

and Klep [BK08]. Let f 2 Fhx1, . . . , xni be any noncommutative polynomial, where

F is a field of zero characteristic. Their theorem states that one of the following is

true: (a) Imk(f) = 0, (b) the span of Imk(f) consists of all scalar multiples of the

identity matrix Ik, (c) the span of Imk(f) is all trace zero matrices over Matk(F),

8

(d) the span of Imk(f) is Matk(F).

It raises a natural algorithmic question: Given a noncommutative polynomial f and

the matrix algebra Matk(F), to e�ciently determine which of the four cases occur.

A randomized polynomial-time algorithm follows easily by substituting the

noncommuting variables with generic k ⇥ k size matrices and evaluating the

commuting generic variables randomly. We show the following result which yields an

e�cient deterministic algorithm for k � deg(f).

Theorem. Given a noncommutative ABP A of size s computing a polynomial

f 2 Fhx1, . . . , xni of degree d, there is a deterministic poly(n, s, d)-time algorithm to

check if Imk(f) is trace zero over Matk(F) for all k � d. If A is given by black-box

access, there is a deterministic (ns)O(log d)-time algorithm to check if Imk(f) is trace

zero for all k � d where |F| � poly(n, s, d).

As we show in Chapter 3, this theorem yields a deterministic polynomial-time

algorithm to check which of the four conditions of the Brešar-Klep theorem holds for

matrix algebras of dimension k � d for a noncommutative polynomial f given by an

ABP.

Applications to Rational Identity Testing

We note that the invertible hitting set of noncommutative ABPs solves a very special

case of RIT where we have a single inverse gate that is at the output of an ABP.

In general, a noncommutative rational circuit of inversion height 1 can be expressed

as a polynomial expression where some of the variables are replaced with inverses of

noncommutative polynomials. Thus, the simplest next case to consider for identity

testing is to allow inverses on linear forms. As we do not have a subexponential-time

algorithm even in this case, it naturally leads us to consider the easier case of RIT

for algebraic branching programs whose multi-edges are labeled by a�ne linear

9

forms or inverses of a�ne linear forms. Such ABPs compute rational expressions of

inversion height one in the free skew field. The rational expression computed by the

ABP is the sum over each source-to-sink path P of the ordered product of a�ne

linear forms or their inverses labeling P . The size of the ABP is defined as the total

number of nodes and multi-edges. For this model, a deterministic quasi-polynomial

time white-box algorithm and a randomized quasi-polynomial time black-box

algorithm already follow from the results of Garg et. al. [GGOW16, IQS18] and

Derksen and Makam [DM17], respectively. We improve these bounds in our special

case by showing a deterministic polynomial time white-box algorithm and a

deterministic quasi-polynomial time algorithm for the black-box model.

Theorem. Given an ABP (in white-box) of size s where each edge is labeled by an

a�ne linear form or inverse of an a�ne linear form over Q, there is a deterministic

poly(s, n) time algorithm to decide if it computes the zero function in

Q2x1, . . . , xn3. If such an ABP is given as a black-box then there is a deterministic

(ns)O(log(ns))-time algorithm for it.

B. E�cient Identity Testing of Free Group Algebras

Our next result is a continuation of the study of the image of noncommutative

polynomials in a more general setting. Let x1, . . . , xn be n indeterminates and � be

the free group generated by x1, . . . , xn
3. We consider free group algebra functions in

F[�] and define a notion of degree and sparsity for free group algebra functions.

This can be seen as a natural special case of rational identity testing, as rational

circuits with inverse gates only at the bottom-most layer compute free group algebra

expressions. Our goal is e�cient black-box identity testing for rational expressions

in the free group algebra F[�].

Our first result is an Amitsur-Levitzki type theorem [AL50] for F[�]. Let A be an

3
The free group � consists of the reduced words i.e. words of hx1, . . . , xn, x

�1
1 , . . . , x�1

n i with the

group axioms that for each i 2 [n], xix
�1
i = 1.

10

associative algebra with identity over F. An element f 2 F[�] is an identity for A if

f(a1, . . . , an) = 0,

for all ai 2 A such that a�1
i

is defined for each i 2 [n].

Theorem. Let F be any field of characteristic zero and f 2 F[�] be a nonzero free

group algebra function of degree at most d. Then f is not an identity for the matrix

algebra Mat2d(F).

The following corollary is immediate.

Corollary (black-box identity testing in free group algebras). There is a black-box

randomized poly(n, d) identity test for degree-d free group algebra functions in F[�].

If the black-box contains a sparse function, we show e�cient deterministic

algorithms for identity testing and interpolation algorithm.

Theorem (reconstruction of sparse functions). Let F be any field of characteristic

zero and f is a free group algebra function in F[�] of degree-d and sparsity-s given

as black-box. Then we can reconstruct f in deterministic poly(n, d, s) time with

matrix-valued queries to the black-box.

Nonzero polynomials in Fhx1, . . . , xni of sparsity-s cannot vanish on O(log s)

dimensional matrix algebras [AJMR17]. We obtain a similar result for F[�]: nonzero

functions in F[�] of degree D and sparsity s do not vanish on O(log s) dimensional

matrices. This yields a randomized polynomial-time identity test if the black-box

contains a free group algebra function f of exponential degree and exponential

sparsity.

Theorem. Let F be any field of characteristic zero. Then, a degree-D function

f 2 F[�] of sparsity s is not an identity for the matrix algebra Matk(F) for

k � c log s for a constant c.

11

Corollary. Given a degree-D free group algebra function f 2 F[�] of sparsity s as

black box, we can check whether f is identically zero or not in randomized

poly(n, logD, log s) time.

We have stated our results for fields of characteristic zero for simplicity. With

suitable modifications, the results easily extend to fields of positive characteristics.

C. Fast Exact Algorithms using Hadamard Product of Polynomials

An interesting aspect of noncommutative computation is that the noncommutative

determinant can be used to define an unbiased estimator for the commutative

permanent polynomial as initially discovered by Godsil and Gutman [GG81]4.

Nevertheless, it turns out that we can use techniques from noncommutative

algebraic complexity to design e�cient algorithms for combinatorial problems. In

this thesis, we explore one such application of using noncommutative computation.

We define a notion of scaled Hadamard product of commutative polynomials and

show its connection to the computation of noncommutative Hadamard product. The

main objective is to use this connection to design faster algorithms for multilinear

monomial detection and related problems as we discuss now.

Let F be any field and x1, . . . , xn be n commuting variables. Koutis and

Williams [Kou08, Wil09, KW16] introduced and studied two natural algorithmic

problems in arithmetic circuits:

1. Given as input an arithmetic circuit C of poly(n) size computing a polynomial

f 2 F[x1, . . . , xn], the k-multilinear monomial counting problem, denoted

(k,n)-MLC is to compute the sum of the coe�cients of all degree-k multilinear

monomials in the polynomial f .

4
Although this direction is not fruitful for the design of approximation schemes as the noncom-

mutative determinant turns out to be hard to compute [JSV04, AS18]

12

2. The k-multilinear monomial detection problem, denoted k -MMD, is to test if

there is a degree-k multilinear monomial in the polynomial f with a non-zero

coe�cient.

These problems have attracted attention in recent times. These are natural

generalizations of the well-studied k-path detection and counting problems in a

given graph [Kou08]. Moreover, some other combinatorial problems like k -Tree,

m-Dimensional k -Matching [KW16], well-studied in parameterized complexity,

reduces to these problems. In general, the exact counting versions of these counting

problems are #W[1]-hard5. For these counting problems, improvements to the

trivial O⇤(nk) time exhaustive search algorithm are known only in some cases (like

counting k-paths) [BHKK09]. Whether one can design an algorithm for (k,n)-MLC

that avoids exhaustive search, is an interesting problem as it would yield a faster

algorithm for all these counting problems. This was explicitly mentioned by Koutis

and Williams [KW16] as an open problem. In the same paper, they give an

algorithm of run time O⇤(nk/2) to compute the parity of the sum of coe�cients of

degree-k multilinear monomials.

We give a new approach to the k -MMD, (k,n)-MLC problems, and related problems.

Our algorithms are based on computing the Hadamard product of polynomials. The

Hadamard product of polynomials f, g 2 F[x1, . . . , xn] is defined as

f � g =
P

m
([m]f · [m]g) ·m, where [m]f denotes the coe�cient of the monomial m

in f . The Hadamard product has proven useful in noncommutative

computation [AJS09, AS18]. A contribution of this thesis is an e�cient

implementation of the Hadamard product in the commutative setting and its

application in the design of e�cient FPT and exact algorithms. In general,

transferring techniques from circuit complexity to algorithm design is an interesting

5
In parameterized complexity theory, if a parameterized counting problem with parameter k

is #W[1]-hard, then it is unlikely to have an f(k)poly(n)-time algorithm for that problem under

reasonable complexity-theoretic assumptions.

13

research direction. We refer the reader to the articles of Williams [Wil14b, Wil14a].

Consider the elementary symmetric polynomial Sn,k of degree k over the n variables

x1, x2, . . . , xn. By definition, Sn,k is the sum of all the degree-k multilinear

monomials. Computing the Hadamard product of Sn,k and a polynomial f sieves

out precisely the degree-k multilinear part of f . This connection with the symmetric

polynomial gives the following result.

Theorem. The (k,n)-MLC problem for an input polynomial in F[x1, . . . , xn], given

as input by an algebraic branching program of size s, has a deterministic

O⇤(
�

n

#k/2

�
)-time algorithm. When f is given as input by an arithmetic circuit C of

size s, has a deterministic O⇤(
�

n

#k/2

�
· sc·log k)-time algorithm where c is a constant.

For the above theorem, the underlying field F could be any field whose elements can

be e�ciently represented, with e�ciently computable field operations. We note that

the above run time beats the naive O⇤(nk) bound, answering the question asked by

Koutis and Williams [KW16]. The notation
�
n

#i

�
stands for

P
i

j=0

�
n

j

�
.

Our next algorithmic result is the following.

Theorem. The k -MMD problem for any arithmetic circuit C of poly(n) size has a

randomized O⇤(4.32k)-time and polynomial space-bounded algorithm.

The underlying field F could be any field whose elements can be e�ciently

represented, with e�ciently computable field operations.

Next, we state the results showing fast deterministic algorithms for depth-three

circuits. We use the notation ⌃[s]⇧[k]⌃ to denote depth three circuits of top ⌃ gate

fan-in s and the ⇧ gates compute the product of k homogeneous linear forms over

x1, . . . , xn.

Theorem. Given any homogeneous depth three ⌃[s]⇧[k]⌃ circuit of degree k, the

(k,n)-MLC problem can be solved in deterministic O⇤(2k)-time. Over Z, the k -MMD

14

problem can be solved in deterministic O⇤(4k)-time. Over finite fields, k -MMD

problem can be solved in deterministic ekkO(log k)O⇤(2ck + 2k) time, where c 5.

D. On Explicit Branching Programs for the Rectangular Determinant

and Permanent Polynomials

We study the rank upper bound of Nisan’s matrix for the noncommutative

polynomial S⇤
n,k

(a noncommutative symmetrized version of the elementary

symmetric polynomial), and some related polynomials to design explicit ABPs. We

then discuss the algorithmic applications of this construction using the Hadamard

product. The rank of Nisan’s matrix for a noncommutative polynomial is used to

show lower bounds for ABPs computing that polynomial. We use the rank to obtain

new upper bound results.

It is well-known that the kth elementary symmetric polynomial Sn,k can be

computed by an algebraic branching program of size O(nk). We consider the

noncommutative symmetrized version S⇤
n,k

, in the ring Fhy1, . . . , yni where y1, . . . , yn

are n noncommuting variables, defined as:

S⇤
n,k

(y1, . . . , yn) =
X

T✓[n]:|T |=k

X

�2Sk

Y

i2T

y�(i).

Nisan [Nis91] shows that any ABP for S⇤
n,k

is of size ⌦(
�

n

#k/2

�
). Recall that, we use

�
n

#r

�
to denote

P
r

i=0

�
n

i

�
. Furthermore, Nisan also shows the existence of an ABP of

size O(
�

n

#k/2

�
) for S⇤

n,k
. However, it does not give an algorithm to construct such an

ABP in time O(
�

n

#k/2

�
). The main upper bound question is whether we can achieve

any constant factor saving of the parameter k in the exponent, in terms of ABP size

and the run time of the construction.

The next polynomial we consider is the rectangular permanent. Given a k ⇥ n

rectangular matrix X = (xi,j)1ik,1jn of commuting variables or a k ⇥ n

15

rectangular matrix Y = (yi,j)1ik,1jn of noncommuting variables, the rectangular

permanent in commutative and noncommutative domains are defined as follows

rPer(X) =
X

�2Ik,n

kY

i=1

xi,�(i), rPer(Y) =
X

�2Ik,n

kY

i=1

yi,�(i).

Here, Ik,n denotes the set of all injections from [k]! [n]. Alternatively,

rPer(X) =
P

S⇢[n]:|S|=k
Per(XS) where XS is the k ⇥ k submatrix whose columns

are indexed by the set S. Of course, such a polynomial can be computed in time

O⇤(nk) using a circuit of similar size. Can the dependence on k be improved? It is

implicit in the work of Williams and Williams [WW13] that the commutative

rPer(X) polynomial has an algebraic branching program of size O⇤(2k). This

problem originates from its connection to exact algorithms for certain combinatorial

problems [WW13]. We note here that there is an algorithm of run time O⇤(
�

n

#k/2

�
)

for computing the rectangular permanent over rings and semirings [BHKK10]. The

challenge is to obtain an
�

n

#k/2

�
-explicit ABP for it.

Theorem. The family of symmetrized elementary polynomials {S⇤
n,k

(y1, . . . , yn)}n>0

and noncommutative rectangular permanent family {rPer(Y)}n>0, where Y is a

k ⇥ n symbolic matrix has
�

n

#k/2

�
-explicit ABPs over any field.

The noncommutative determinant polynomial of a symbolic matrix Y = (yi,j)1i,jk

is defined as below, with variables in the monomials ordered left to right:

Det(Y) =
X

�2Sk

sgn(�) y1,�(1) . . . yk,�(k).

It is known as the Cayley determinant. Nisan [Nis91] has also shown that ABPs for

the noncommutative determinant of a k ⇥ k symbolic matrix require size ⌦(2k). In

this thesis, we give an explicit construction of such an ABP in time O⇤(2k).

Motivated by the aforementioned result of Williams and Williams [WW13] for

16

rectangular permanent, we also study the complexity of the rectangular determinant

polynomial (in the commutative domain) defined as follows.

rDet(X) =
X

S2([n]
k)

Det(XS).

We prove that the rectangular determinant polynomial can be computed using

O⇤(2k)-size explicit ABP.

Theorem. We show that (a) the family of noncommutative determinants

{Det(Y)}k>0 has 2k-explicit ABPs over any field, (b) there is a family {fn} of

noncommutative degree-k polynomials fn such that fn has the same support as S⇤
n,k

,

and it has 2k-explicit ABPs, (c) the commutative rectangular determinant family

{rDet(X)}k>0, where X is a k ⇥ n matrix of variables has 2k-explicit ABPs.

Finally, we show the problem of evaluating the noncommutative rectangular

determinant over matrix algebras is #W[1]-hard for polynomial dimensional

matrices. Hence the noncommutative rectangular determinant is unlikely to have an

explicit O⇤(no(k))-size ABP.

Theorem. For any fixed ✏ > 0, evaluating the k ⇥ n rectangular determinant

polynomial over n✏
⇥ n✏ rational matrices is #W[1]-hard, treating k as fixed

parameter.

Interestingly, for small dimensional algebra, we can obtain an FPT algorithm as we

show that the rectangular determinant (and the rectangular permanent), whose

entries are r ⇥ r matrices over any field, can be computed in time O⇤(2kr2k).

17

Organization

In Chapter 2, we revisit the lower bounds results and polynomial identity testing

algorithms for noncommutative polynomials. The subsequent chapters are presented

in the same order as they have been described above. In Chapter 3, we study the

invertibility and span of the image of noncommutative polynomials and show some

applications to the rational identity testing problem. An e�cient identity testing

algorithm for free group algebras is presented in Chapter 4. In Chapter 5, we show a

connection of noncommutative computation in designing fast exact algorithms using

the Hadamard product of polynomials. In Chapter 6, we present the construction of

explicit branching programs for rectangular permanent, rectangular determinant,

and some related polynomials. Finally, we conclude in Chapter 7 by summarizing

the main results of this thesis and listing down some interesting open problems.

18

Chapter 2

Background on Noncommutative

Algebraic Complexity

In this chapter, we recall some lower bound results and polynomial identity testing

(PIT) results for noncommutative algebraic complexity. The aim of this chapter is

not to present the state-of-the-art progress in lower bounds or PIT. Rather, it serves

as a building block for the subsequent chapters. We start with the definitions of

some basic models of computing polynomials. We then mainly focus on the

exponential lower bounds and deterministic PIT algorithms for noncommutative

ABPs, randomized polynomial-time PIT algorithm for noncommutative circuits, and

the notion of Hadamard product of noncommutative polynomials. We then discuss

the connection of noncommutative algebraic complexity to algebraic automata

theory. Finally, we conclude with an introduction to the rational identity testing

problem.

Noncommutative arithmetic complexity deals with the complexity of computing

noncommutative polynomials. For instance, noncommutative arithmetic circuits

have addition and multiplication gates, and circuit inputs are either variables from

X = {x1, x2, . . . , xn} or scalars from the field F. Multiplication gates respect its

19

input order since the variables are noncommuting. The free noncommutative ring

FhXi is the ring of all noncommutative polynomials in X-variables over the field F.

Basic Computational Models for Computing

Polynomials

The two most natural models of computing polynomials extensively studied in

algebraic complexity are arithmetic circuits and arithmetic formulas.

Definition 1 (Arithmetic Circuit). Let F be a field and x1, . . . , xn be n

indeterminates. An arithmetic circuit computing a polynomial f 2 F[x1, . . . , xn] is a

directed acyclic graph computing a polynomial at each node. The source nodes are

labeled by input variables x1, . . . , xn or scalars in F. Each internal node is labeled by

a +-gate or a ⇥-gate computing the sum or the product respectively of the

polynomials computed by its children and f is computed at some sink node.

x1 x2 1

+ +

⇥

x2
1x2 + x1x2

2 + x1x2 + x2
2 + x2

Figure 2.1: An arithmetic circuit computing x2
1x2 + x1x2

2 + x1x2 + x2
2 + x2

If the underlying directed acyclic graph is indeed a tree, we define it as an

arithmetic formula.

Another well-known model which is of particular interest in this thesis is an

algebraic branching program. It is defined as follows.

20

s

1

2

3

4

5

6

t

3

�5

�x1 + 2x2

�3x1 + 4x2

2x1 + x2

�2x1

x1 + x2

x1 � x2

�1

2

Figure 2.2: An ABP computing 10x2
1 � 18x2

2 � 4x1x2 + 46x2x1

Definition 2 (Algebraic Branching Programs (ABP)). An algebraic branching

program (ABP) is a directed acyclic graph with one in-degree-0 vertex called the

source, and one out-degree-0 vertex called the sink. The vertex set of the graph is

partitioned into layers 0, 1, . . . , `, with directed edges only between adjacent layers (i

to i + 1). The source and the sink are at layers zero and ` respectively. Each edge is

labeled by a linear form over variables x1, x2, . . . , xn. Let P = (e1, e2, . . . , e`) be a

source-to-sink directed path and let Li be the linear form labeling the edge ei on the

path. Then the polynomial computed by the ABP is defined as the sum of products

(2.1)
X

P

`Y

i=1

Li,

where the sum is over all source-to-sink directed paths P . An ABP is homogeneous

if all edge labels are homogeneous linear forms.

It is known that an arithmetic formula (namely, an arithmetic circuit where each

gate has fanout one) of size s can be transformed into an ABP of size poly(s).

Furthermore, ABPs of size s can be converted to arithmetic circuits of size poly(s).

A major open problem is to show a separation between any of these models. One

can also define these models in the noncommutative setting by fixing an ordering on

the multiplications.

21

Lower Bound of Noncommutative ABPs

The study of noncommutative computation is motivated by the hope that

exponential lower bounds in noncommutative models of computation are

substantially easier to prove than their commutative counterparts. Indeed, Nisan

has shown an exponential lower bound on noncommutative ABPs in his seminal

paper [Nis91]. Interestingly, the exponential lower bound on the size of the

noncommutative ABP was shown for the palindrome polynomial which is known to

have a polynomial-size noncommutative circuit. Therefore, it also yields an

exponential separation between noncommutative circuits and noncommutative

ABPs. Before we state the main lower bound result, we recall some definitions.

Definition 3 (ABP complexity). For a noncommutative polynomial, f 2 FhXi, the

ABP complexity of f , B(f) is defined as the minimum size of the noncommutative

ABP computing the polynomial f .

If a noncommutative polynomial of degree d has a small ABP, then any of its degree

i (for any i d) homogeneous component can also be computed by a small

ABP [RS05]. Therefore, to prove an ABP lower bound for a noncommutative

polynomial, it su�ces to prove it for a homogeneous component of that polynomial

(indeed it is true even for commutative polynomials and for circuits also).

We now define a matrix corresponding to every (homogeneous) noncommutative

polynomial that plays a crucial role in proving the lower bound.

Definition 4 (Nisan’s matrix [Nis91]). For any degree-d homogeneous

noncommutative polynomial f 2 FhXi, for each 0 k d, the Nisan’s matrix of f

for k, Hk(f) is an defined as the following nk
⇥ nd�k matrix. Each row of Hk(f) is

indexed by a degree-k word over Xk and each column of Hk(f) is indexed by a

degree-(d� k) word over Xd�k. For a row indexed by m1 and a column indexed by

m2, the (m1,m2)th entry of Hk(f) is defined as the coe�cient of m1m2 in the

22

polynomial f , i.e.

Hk(f)[m1,m2] = [m1m2]f.

We are now ready to state the main theorem of [Nis91].

Theorem 1. [Nis91] For any degree-d homogeneous noncommutative polynomial

f 2 FhXi,

B(f) =
dX

k=0

rank(Hk(f)).

Now the exponential lower bound for noncommutative polynomials such as the

palindrome polynomial, determinant polynomial, permanent polynomial, and many

others follows from showing an exponential lower bound on the rank of the

corresponding Nisan’s matrix.

We point out that Theorem 1 is extensively used to prove lower bound results

mostly. In this thesis, we show some upper bound results and some interesting

combinatorial applications of this theorem.

Noncommutative Polynomial Identity Testing

The noncommutative polynomial identity testing problem is an algorithmic problem

that asks to determine whether a given noncommutative polynomial is zero in the

free algebra. The PIT problems are of two types: white-box PIT and black-box PIT.

For white-box PIT, we are allowed to “see” the circuit structure computing the

noncommutative polynomial. In the black-box setting, we can only “see” the output

matrix evaluated on some tuple of matrices from a suitable matrix algebra.

If the polynomial is computable by a noncommutative ABP, then the PIT problem

is almost settled both in white-box and black-box. When the polynomial is

computable by a noncommutative circuit or we only have black-box access to the

23

noncommutative polynomial, then we only have a randomized polynomial-time

algorithm in two special cases.

PIT of noncommutative ABPs

For noncommmutative algebraic branching programs (ABPs) there is a deterministic

polynomial-time PIT algorithm in the white-box model [RS05]. In the black-box

model, there is a quasi-polynomial-time deterministic algorithm given by a

quasi-polynomial-size hitting set construction [FS13]. In contrast, for commutative

algebraic branching programs, e�cient deterministic PIT algorithms are known only

in very restricted cases. We first recall the white-box PIT algorithm of Raz and

Shpilka [RS05].

Theorem 2 (Raz-Shpilka [RS05]). Given an ABP of width w and d many layers

computing a noncommutative polynomial f 2 FhXi, there is a deterministic

poly(w, d, n) time algorithm to test whether f ⌘ 0 or not.

The main idea of the Raz-Shpilka algorithm is that when we merge two consecutive

layers of a noncommutative ABP of width w over x1, x2, . . . , xn, even though there

can be n2 many degree-2 monomials, essentially it su�ces to maintain only w2 many

monomials as each of the coe�cient matrices can be thought of as an

w2-dimensional vector over F.

For the black-box case, Forbes and Shpilka [FS13], have shown an e�cient

construction of quasi-polynomial size hitting set for noncommutative ABPs.

Consider the class of noncommutative ABPs of width w, and depth d computing

polynomials in FhXi. The result of Forbes and Shpilka provide an explicit

construction (in quasi-polynomial-time) of a set Hw,d,n contained in Matd+1(F), such

that for any ABP (with parameters w and d) computing a nonzero polynomial f ,

there always exists
¯
↵ 2 Hw,d,n such that f(

¯
↵) 6= 0.

24

Theorem 3 (Forbes-Shpilka [FS13]). For all w, d, n 2 N, if |F| � poly(d, n, w),

then there is a hitting set Hw,d,n ⇢ Matd+1(F) for noncommutative ABPs of

parameters w, d, n such that |Hw,d,n | (wdn)O(log d) and there is a deterministic

algorithm to output the set Hw,d,n in time (wdn)O(log d).

Indeed, in the same paper [FS13], the authors also obtain a deterministic

quasi-polynomial-time PIT algorithm for commutative set-multilinear ABPs and

read-once oblivious ABPs. It will be useful for this thesis to present these models

and the corresponding PIT results.

Definition 5 (Set-multilinear ABP). A set-multilinear ABP in the variable set

Y = {y1,1, . . . , y1,d, . . . , yn,1, . . . , yn,d} is an ABP of depth d, such that each edge

between layer `� 1 and layer ` is labeled using a linear form in variables yi,` for

i 2 [n].

Definition 6 (Read-once oblivious ABP (ROABP)). An read-once oblivious ABP

in the variable set Z = {z1, . . . , zd} is an ABP of depth d, such that each edge

between layer `� 1 and layer ` is labeled using a univariate polynomial in variable zi

of degree at most n.

Hitting set generator for commutative ROABPs

Now we recall the definition of a hitting set generator and commutative ROABPs.

Let us first define a hitting set generator.

Definition 7 (Hitting Set Generator). Let C be a class of circuits computing

polynomials on n variables, a polynomial map G : Fm
! Fn where m < n is a

generator for C if for every polynomial f computed by a circuit in C, f ⌘ 0 if and

only if f � G ⌘ 0. If the degree of G is bounded by r and degree of each polynomial in

C is bounded by d, then clearly, for any S ✓ F such that |S| > (rd)m, G(S) is a

hitting set of C.

25

Observe that, a hitting set generator G : Fm
! Fn can be thought of as an m-input

and n-output circuit. The degree of a generator is the maximum degree of an input

variable.

Theorem 4 (Forbes-Shpilka). Let C be the class of polynomials in F[Z] which are

computable by width s depth d commutative ROABPs. If |F| � poly(n, s, d) then

there is a hitting set generator G : Fm
7! Fd where m = O(log d) and the degree of

the generator is at most dns4.

It immediately yields a PIT algorithm for commutative ROABPs.

Connection to the PIT of set-multilinear ABPs and noncommutative

ABPs

Given a set-multilinear ABP over Y variables, it is easy to observe that by replacing

yi,j by zi
j
, we obtain a ROABP. Moreover, this substitution is identity preserving1.

Therefore, we also obtain a deterministic quasi-polynomial-time PIT algorithm for

set-multilinear ABPs.

Let us define a map SM : FhXi ! F[Y] such that for any degree-d word w 2 Xd, let

w = xi1 · · · xid
, then,

SM(xi1 · · · xid
) = yi1,1 · · · yid,d.

We extend the definition for any noncommutative polynomial by linearity. Notice

that SM is identity preserving. Therefore, given a noncommutative ABP computing

a polynomial f 2 FhXi as input, if we can compute SM(f), we can then reduce the

PIT problem to the PIT of set-multilinear ABPs. In [FS13], the authors use this

connection by substituting the following matrices.

1
Let C1 and C2 be two class of polynomials. A map � : C1 ! C2 is identity preserving if the

following is true: f 2 C1 is a polynomial identity if and only if �(f) 2 C2 is a polynomial identity.

26

For each i 2 [n], define Mi =

2

66666666664

0 yi,1

0 yi,2
. . .

0 yi,d

0

3

77777777775

.

PIT of Noncommutative Circuits (in Black-Box)

Let A be an associative algebra with identity over F. A noncommutative polynomial

f 2 FhXi is an identity for A if

f(a1, . . . , an) = 0,

for all ai 2 A. The study of noncommutative black-box PIT is essentially the study

of the complexity of the polynomial identities as we describe next. We have a

randomized polynomial-time black-box PIT algorithm for two restricted cases,

noncommutative polynomials with polynomially-bounded degree [BW05] and

exponentially-bounded sparsity [AJMR17].

Ring of Generic Matrices

Let {z(k)
ij

} be a collection of distinct commuting variables for each integer k and

i, j 2 [d]. Let us define Tk = (z(k)
ij

) for each k. We call these Tk matrices as the d⇥ d

generic matrices. Let F[{z(k)
ij

}] be the polynomial ring in {z(k)
ij

} variables. Observe

that, each Ti is in Matd(F[{z(k)
ij

}]). The ring of generic matrices Rd is defined as the

subalgebra generated by these Tk matrices.

27

Noncommutative PIT for bounded degree

Bogdanov and Wee [BW05] showed a randomized polynomial-time PIT algorithm

for noncommutative circuits computing a polynomial of polynomially bounded

degree, based on the Amitsur-Levitzki theorem [AL50]. Amitsur-Levitzki theorem

studies the complexity of polynomial identities. It states that a nonzero polynomial

f 2 FhXi of degree < 2k cannot be an identity for the ring Matk(F) of k ⇥ k

matrices over F. In [BW05], the authors use this theorem to obtain a randomized

poly(n, d)-time PIT algorithm for noncommutative polynomials in FhXi of degree d.

It simply follows from substituting each xi by d0 ⇥ d0 generic matrices where

d0 = 2d + 1. As f is of degree < 2d0, f(T1, . . . , Tn) must be non-zero in Rd, therefore

for some i, j, the polynomial gij computed in the (i, j)th entry of f(T1, . . . , Tn) must

be non-zero in F[{z(k)
ij

}]. It now reduces to commutative PIT.

Noncommutative PIT for bounded sparsity

Similar to the Amitsur-Levitzki theorem, in [AJMR17], the authors study the

complexity of a polynomial identity with respect to the sparsity2. They show that a

nonzero noncommutative polynomial does not vanish on matrices of dimension

logarithmic in the sparsity of the polynomial. This yields a randomized

poly(n, log s)-time PIT algorithm for noncommutative polynomials in FhXi of

sparsity s. It follows from substituting k ⇥ k generic matrices where k = dlog se+ 1.

Remark 1. Let f 2 FhXi be a noncommutative polynomial that is computable by a

poly(n)-size circuit. The degree of f can be as large as exponential in n and the

sparsity of f can be doubly exponential in n. Therefore, obtaining a poly(n)-time

PIT algorithm (even randomized) for noncommutative polynomials without any

restriction in degree or sparsity remains open.
2
Sparsity of a polynomial is the number of monomials in the polynomial with non-zero coe�cient.

28

Hadamard Product of Noncommutative

Polynomials

We first define the Hadamard product of two noncommutative polynomials.

Definition 8. Hadamard product of polynomials Given two noncommutative

polynomials f and g in FhXi, the Hadamard product of f and g is defined as the

following noncommutative polynomial,

f � g =
X

m2X⇤

[m]f · [m]g ·m,

where [m]f and [m]g is the coe�cient of the monomial m in the polynomial f and g

respectively.

The notion of Hadamard product was well-known in algebraic automata

theory [BR11, Theorem 5.5]. In [AJS09], [AMS10], [AS10], the authors use this

notion for noncommutative polynomials and obtain interesting new results. In

mathematics, Hadamard product of two matrices generally refers to their entry-wise

product i.e. for two matrices A and B of same dimension m, A �B is an m⇥m

matrix where for every 1 i, j m, the (i, j)th entry of A �B is the product of the

(i, j)th entry of A and the (i, j)th entry of B. Recall that, Hf denotes the Nisan’s

matrix corresponding to a noncommutative polynomial f . Observe that,

Hk(f � g) = Hk(f) �Hk(g).

It is known that in the noncommutative domain, computing the Hadamard product

of two polynomials is easy when the polynomials are computable by ABPs.

Theorem 5. [AJS09] Given a noncommutative ABP of size S 0 for a degree k

polynomial f 2 FhXi and a noncommutative ABP of size S for another degree k

polynomial g 2 FhXi, we can compute a noncommutative ABP of size SS 0 for f � g

in deterministic SS 0
· poly(n, k)-time.

29

Let C be a circuit and B an ABP computing homogeneous degree-k polynomials

f, g 2 FhXi respectively. Then their Hadamard product f � g has a

noncommutative circuit of polynomially bounded size which can be computed

e�ciently [AJS09, AS18].

Theorem 6. [AS18, Corollary 4] Given a noncommutative ABP of size s1

computing a degree-d polynomial g 2 FhY i and another degree-d polynomial

f 2 FhY i by an arithmetic circuit of size s2 we can compute an arithmetic circuit of

size O(s31 · s2) for f � g in time polynomial in s1, s2 and d.

Furthermore, if C is given by black-box access then f � g(a1, . . . , an) for

ai 2 F, 1 i n can be evaluated by evaluating C on matrices defined by the ABP

B [AS18] as follows: For each i 2 [n], the transition matrix Mi 2 Mats(F) are

computed from the noncommutative ABP B (which is of size s) that encode layers.

We define Mi[k, `] = [xi]Lk,`, where Lk,` is the linear form on the edge (k, `). Now to

compute (f � g)(a1, a2, . . . , an) where ai 2 F for each 1 i n, we compute

C(a1M1, a2M2, . . . anMn). The value (f � g)(a1, a2, . . . , an) is the (1, s)th entry of

the matrix f(a1M1, a2M2, . . . , anMn).

Theorem 7. [AS18] Given a circuit C and an ABP B computing homogeneous

noncommutative polynomials f and g in FhY i, the Hadamard product f � g can be

evaluated at any point (a1, . . . , an) 2 Fn by evaluating C(a1M1, . . . , anMn) where

M1, . . . ,Mn are the transition matrices of B, and the dimension of each Mi is the

size of B.

30

Connecting Noncommutative Algebraic

Complexity to Algebraic Automata Theory

In this section, we explore an interesting connection between noncommutative

algebraic complexity and algebraic automata theory [AMS10]. Throughout this

thesis, we use this connection as a fundamental tool to obtain new algorithmic

results.

Background on Algebraic Automata Theory

We recall some basic algebraic automata theory. More details can be found in the

book of Berstel and Reutenauer [BR11].

Let K be a semiring and X be an alphabet3. A K-weighted automaton over X is a

4-tuple, A = (Q, I, E, T), where Q is a finite set of states, and the mappings

I, T : Q! K are weight functions for entering and leaving a state respectively, and

E : Q⇥X ⇥Q! K is the weight of each transition. We define |Q|, the number of

states, to be the size of the automaton. A path is a sequence of edges :

(q0, a1, q1)(q1, a2, q2) . . . (qt�1, at, qt). The weight of the path is the product of the

weights of the edges. The formal series S 2 K�X� which is the (possibly infinite)

sum of the weights over all the paths that are recognized by A. Then, for each word

w = a1a2 · · · at 2 X⇤, the contribution of all the paths for the word w is given by

[w]S =
P

q0,...,qt2Q I(q0) · E(q0, a1, q1) · · ·E(qt�1, at, qt) · T (qt).

A K-weighted automaton A with ✏-transitions over X is defined with E modified,

such that E : Q⇥ {X [✏}⇥Q! K. Let A0 2 Mat|Q|(K) be the transition matrix

for the ✏-transitions. It is well-known that if
P

k
Ak

0 converges, then another

automaton A
0 without ✏-transitions computing the same series can be

3
We interchangeably use X as a variable set of ABPs and as alphabet symbol of weighted

automata.

31

constructed [LS12]. The automaton is said to be valid if
P

k
Ak

0 converges.

The following basic result by Schützenberger [Sch61] is the key to transforming

zeroness testing of weighted automata up to a finite length only. For the proof, see

[Eil74, Corollary 8.3].

Theorem 8 (Schützenberger). Let K be a subring of a division ring and A be a

K-weighted automaton without any ✏-transition with s states computing a series S

in K�X�. Then S is a nonzero series if and only if there is a word w 2 X⇤ of

length at most s� 1, such that w 2 supp(S).

Running Automaton over a Noncommutative Polynomial

Let f 2 FhXi be a polynomial of degree bounded by d. We consider monomials in

variables X as strings over the alphabet X. Let A = (Q,X, �, q0, qf) be a finite

automaton over the alphabet X of size s recognizing a language L : X⇤
! {0, 1}.

Define Mi 2 Mats({0, 1}) to be the transition matrix corresponding to xi in A i.e.

for each q, q0 2 [s], Mi[q, q0] = 1 if �(q, xi) = q0 otherwise Mi[q, q0] = 0. We are

interested in the output matrix obtained when each input xi to the polynomial f is

replaced by the matrix Mi. The output matrix of f on automaton A, denoted Mout,

is the matrix f(M1, . . . ,Mn). Suppose f(x1, . . . , xn) = ↵xj1 · · · xjk
, with a non-zero

coe�cient alpha 2 F. Clearly,

Mout = ↵Mj1 · · ·Mjk
= ↵Mw,

where w = xj1 · · · xjk
. Thus, the matrix entry Mout(q0, qf) is 0 when A rejects w,

and c when A accepts w. In general, if f =
P

w2X⇤ ↵ww, then

Mout(q0, qf) =
X

w:L(w)=1

↵w.

32

We can generalize this for a substitution automaton A recognizing a language

L : X⇤
! R for some commutative ring R. For each transition �(q, xi) = q0, it

substitutes some a 2 R and the corresponding transition matrix Mi[q, q0] = a. Now,

for any noncommutative polynomial f =
P

w2X⇤ ↵ww, we obtain,

Mout(q0, qf) =
X

w:L(w) 6=0

↵w · L(w).

Let f 2 Fhx1, x2, . . . , xni be a noncommutative polynomial and let Mi 2 Matt(F)

be a matrix substitution for the variables xi, 1 i n.

It is useful to interpret the evaluation of f(M1,M2, . . . ,Mn) as the run of a t-state

(nondeterministic) substitution automaton A by treating Mi as its transition

matrices on input variables xi. More precisely, we can interpret the (i, j)th entry of

the matrix f(M1,M2, . . . ,Mn) as follows:

• i is treated as the start state of A and j as the final state.

• The contribution of each nonzero monomial xi1xi2 · · · xir to the (i, j)th entry of

the matrix product Mi1Mi2 · · ·Mir is obtained as a sum of products over all i

to j transition paths of the form

↵ ·Mi1 [i, j1]Mi2 [j1, j2] . . .Mir [jr�1, j],

where ↵ 2 F is the coe�cient of the monomial in f .

• These products correspond precisely to the nondeterministic i to j paths of

the automaton on input xi1xi2 · · · xir .

• Finally, the (i, j)th entry of the matrix f(M1,M2, . . . ,Mn) is a linear

combination over all monomials occurring in f .

33

This automata-theoretic interpretation has proven useful in designing PIT

algorithms for noncommutative polynomials in various settings [AMS10, AJMR17].

Rational Identity Testing

Arithmetic circuit complexity is mainly concerned with the computation of

polynomials and rational functions using basic arithmetic operations: additions,

multiplications, and inverses. Inverse gates can be e�ciently eliminated in

commutative circuits [Str73], but their role in the noncommutative computation is

more complicated.

The study of noncommutative rational expressions is a classical subject [Ami66] and

their computational aspects are of interest in algebraic automata theory. Formally,

these are the elements of the universal skew-field of fractions F2X3 where

X = (x1, . . . , xn), and x1, x2, . . . , xn are n free noncommuting variables and F is a

scalar field. Two rational expressions r and s are defined equivalent if they agree on

any d⇥ d tuple of matrices for all d whenever both are defined. The elements of the

universal free skew-field consist of rational expressions modulo this equivalence

relation [Ami66]. More recently, Hrubeš and Wigderson [HW15] initiated a

complexity-theoretic study of noncommutative rational expressions. The complexity

of a rational expression is defined as the size of an e�cient representation of that

expression such as a rational circuit, a rational formula, etc. In [HW15], the authors

initiated the algorithmic study of rational identity testing (RIT): determine if a

given noncommutative rational expression computes the zero function in the free

skew-field. For example, the rational expression (x + xy�1x)�1 + (x + y)�1
� x�1,

known as Hua’s identity [Hua49], is zero in the free skew-field.

The linear pencil model for computing rational expressions has played an important

role in designing RIT algorithms. A linear pencil L of size s over
¯
x variables is a

34

s⇥ s matrix whose entries are linear forms in
¯
x. That is, L = A0 +

P
n

i=1 Aixi,

where each Ai is an s⇥ s matrix over F. A rational function r in F2X3 has a linear

pencil representation L of size s, if for some i, j 2 [s], r = (L�1)i,j where the inverse

of the matrix L is defined in a precise sense [HW15]. It turns out that RIT for

linear pencils can be e�ciently reduced to the noncommutative singularity problem

Singular [HW15]. Since Singular has a deterministic polynomial-time algorithm in

the white-box model [GGOW16, IQS18] and has a randomized polynomial-time

algorithm in the black-box model [DM17], we obtain, as consequence, RIT

algorithms for rational expressions with small linear pencils. The RIT algorithm for

noncommutative rational formulas follows from the fact that an rational formula has

a small linear pencil representation which can be e�ciently computed [HW15].

35

36

Chapter 3

Image of Noncommutative

Polynomials and Applications to

Rational Identity Testing

In this chapter, we focus on algorithmic questions concerning the image of

noncommutative polynomials. Any noncommutative polynomial f 2 Fhx1, . . . , xni

defines a map from n-tuples of d⇥ d matrices over F to d⇥ d matrices, for every

dimension d. As we have seen in Chapter 2, identity testing of noncommutative

polynomials is closely related to the complexity of polynomial identities. A

polynomial identity is a noncommutative polynomial whose image set contains only

the zero matrices for any dimension d. In this chapter, we explore the invertibility

and trace of the image set of noncommutative polynomials. The image of

noncommutative polynomials has been explored in mathematics [Šp12, BK08]. For

example, Brešar and Klep [BK08] have shown that the span of the image of any

noncommutative polynomials can have only four possibilities: either zero, scalar

multiple of the identity matrix or trace zero, or full matrix algebra. Our

contribution is to address the algorithmic questions associated with these problems

37

and show some interesting applications. We also study the Rational Identity Testing

(RIT) problem for a generalization of ABPs, where we allow a sum of linear forms

and inverses of linear forms as edge labels. In order to obtain a deterministic

black-box RIT in this model, we apply some ideas from algebraic automata theory.

Let X = (x1, x2, . . . , xn) be a set of n free noncommuting variables and F be any

scalar field. The free noncommutative ring FhXi is the ring of all noncommutative

polynomials in X-variables over the field F.

Let us first formally define the image set of noncommutative polynomials.

Definition 9 (Image Set of a Noncommutative Polynomial). For the matrix algebra

Matk(F) for some integer k, the image set of a noncommutative polynomial

f 2 FhXi is defined as the set

Imk(f) = {f(M1, . . . ,Mn) | (M1, . . . ,Mn) 2 Matn
k
(F)}.

3.1 Invertible Image of Noncommutative ABPs

In this section, we study the invertibility of an image set of a noncommutative

polynomial. More precisely, we study the following algorithmic problem: Given a

noncommutative polynomial f 2 FhXi, find an invertible matrix in the image set

Imk(f) of f for any k, if it exists. Notice that, this problem is harder than the PIT

problem. If we are only interested to know the existence of an invertible matrix in

the image set, this problem reduces to the PIT problem following Amitsur’s theorem

on the universal division algebra [Row80, LZ09].

38

Amitsur’s theorem on universal division algebra

Recall from Chapter 2 that Rd is the ring of d⇥ d generic matrices. The central

quotient of Rd is denoted as UD(d). Amitsur showed that UD(d) is a division ring,

also known as the universal division algebra of degree d [Ami66]. It follows from

Amitsur’s theorem that any non-zero noncommutative polynomial (even rational

expression) evaluated on d⇥ d generic matrices for some large enough d must be

invertible. In other words, if a noncommutative polynomial f is not an identity of

Matd(F) then Imd(f) contains an invertible matrix for large enough d. However, it

only argues the existence of such an invertible matrix in the image set and a

randomized polynomial-time algorithm follows. However, finding an invertible image

in Imd(f) in deterministic sub-exponential-time (even if we know it exists) remains

open.

We solve this problem when the input noncommutative polynomial is computable by

a noncommutaive ABP. Recall from Chapter 2 that for this class we already have a

deterministic polynomial-time white-box PIT algorithm and a deterministic

quasi-polynomial-time black-box PIT algorithm. We show that we can also find an

invertible matrix in the image set in a similar running time.

Theorem 9. Given black-box access to a noncommutative polynomial f 2 FhXi of

degree d, computable by an ABP A of size at most s, there is a deterministic

quasi-polynomial-time algorithm of running time (snd)O(log d) that computes a matrix

tuple (M1, . . . ,Mn) 2 Matn
d
(F) of d⇥ d matrices such that f(M1, . . . ,Mn) is

invertible where |F| > poly(d, n, s). In white-box, we can compute a matrix tuple

(M1, . . . ,Mn) 2 Matn
d
(F) of d⇥ d matrices such that f(M1, . . . ,Mn) is invertible

where |F| > poly(d, n, s) in deterministic poly(s, n, d) time.

Proof. The idea is to reduce the problem of finding an invertible matrix in the

image set of the input polynomial to solving PIT of product commutative ROABPs.

39

Let us first fix some notations. Suppose Sd denotes the set of permutations

{� : [d]! [d]}. For a degree-d word m 2 Xd, let m = xi1 · · · xid
. We define

�-permuted word m� = xi�(1)
· · · xi�(d)

. For a degree-d homogeneous noncommutative

polynomial g 2 FhXi, g� is defined as g� =
P

m2supp(g)[m]g ·m�. For each

j 2 {0, 1, . . . , d� 1}, �j 2 Sd denotes the permutation that cyclically rotates a

monomial right to left by j steps. As a permutation,

�j = (j + 1, j + 2, . . . , d, 1, . . . , j).

As preparation, we show in the following lemma that each cyclic shift of a

noncommutative homogeneous ABP of size s can be computed by an ABP of size

polynomial in s.

Lemma 1. Let A be a homogeneous ABP of size s computing a noncommutative

polynomial g 2 FhXi of degree d. For each j 2 [d� 1], there is a O(s2) size ABP

computing g�j .

Proof. Let w s be the width of the ABP. We can write g =
P

w

i=1 piqi, where for

i 2 [w], pi is the polynomial of degree j computed from the source to the ith node of

layer j and qi is the polynomial of degree d� j computed from the ith node of layer j

to the sink. It is easy to see that g�j =
P

w

i=1 qipi. For each piqi, one can extract out

an ABP of size at most s from the ABP for g by surgery. Notice that, we can obtain

an ABP of size s for each qipi by rearranging the layers. Therefore, putting them

together to obtain g�j =
P

w

i=1 qipi gives us an ABP of size at most ws = O(s2).

We first explain the proof for homogenous degree d ABPs. For each i 2 [n] construct

the following matrices:

40

(3.1) Mi =

2

66666666664

0 yi,1 0 · · · 0

0 0 yi,2 · · · 0

...
...

...
. . .

...

0 0 0 · · · yi,d�1

yi,d 0 0 · · · 0

3

77777777775

d⇥d

.

It is possible to view these matrices as the transition matrices of a labeled

automaton. We observe that for a monomial m = xi1xi2 · · · xid
, the matrix

m(M1, . . . ,Mn) is a diagonal matrix. Moreover, for any j 2 [d], the (j, j)th entry is

given by (yi1,j · · · yid�(j�1),d
)(yid�(j�2),1 · · · yid,j�1). Since Y = {yi,j} is a set of

commutative variables, the above is same as SM(m�d�(j�1))1.

Thus, for any homogeneous degree d polynomial f , by linearity we get that

f(M1, . . . ,Mn) is also a diagonal matrix and the (j, j)th entry is SM(f�d�(j�1)).

The image of the polynomial f is invertible on a point (M1, . . . ,Mn), if and only if

det(f(M1, . . . ,Mn)) 6= 0. Further if the shape of each Mi is as described in

Equation 3.1, we have,

det(f(M1, . . . ,Mn)) =
d�1Y

j=0

SM(f�j).

Note that, if the noncommutative polynomial f is nonzero then for each �j 2 Sd,

f�j is also nonzero. Recall that, for any f , f is nonzero if and only if SM(f) is

nonzero. Hence, given a nonzero polynomial f , det(f(M1, . . . ,Mn)) is a nonzero

polynomial as every diagonal entry evaluates to a nonzero commutative polynomial.

Since f�0 has an ABP of size s, each cyclic shift f�j has an ABP of size O(s2) by

1
For any homogeneous degree-d noncommutative polynomial f =

P
m2Xd [m]fm, recall that

SM(f) =
P

m2Xd [m]fSM(m) where if m = xi1 · · ·xid then SM(m) = yi1,1 · · · yid,d where Y is a

set of commuting variables.

41

Lemma 1. Therefore, the set-multilinearization SM(f�0) has an ABP of size s, and

each SM(f�j) has an ABP of size O(s2), over the same variable partition

Y = Y1 t Y2 t · · · t Yd. It is obtained by making the input ABP set-multilinear i.e.

by replacing each xi variable in the jth layer by yi,j.

Let Z = {z1, . . . , zd} be a set of commuting variables. We can now replace each yi,j

by zi
j
. As discussed in Chapter 2, by replacing yi,j by zi

j
in a set-multilinear ABP

over the variable partition Y = Y1 t Y2 t · · · t Yd yields an ROABP with the

variable partition z1 < . . . < zd. Therefore, det(f(M1, . . . ,Mn)) can be expressed as

a product of commutative ROABPs each of size O(s2) and over the same variable

partition. Let hk be the ROABP by replacing yi,j by zi
j

in SM(f�k). Therefore we

may write

(3.2) det(f(M1, . . . ,Mn)) =
d�1Y

k=0

hk(z1, . . . , zd).

Now we briefly discuss how to use a generator of Forbes-Shpilka [FS13] to complete

the algorithm. Let G : Fm
7! Fd be the hitting set generator for the commutative

ROABPs of size O(s2) over the variable partition z1 < . . . < zd with d layers where

m = O(log d) as promised by the result in [FS13] (see Chapter 2 for more details).

The map G is a polynomial map where each zi is substituted by a polynomial

pi(↵1, . . . ,↵m) of degree at most D = dns8 with the property that each hk � G is

non-zero if and only if hk 6⌘ 0. Thus, to prove that f(M1, . . . ,Mn) is invertible, it

su�ces to show,

d�1Y

k=0

(hk � G) =

d�1Y

k=0

hk

!
� G = det(f(M1, . . . ,Mn)) � G 6⌘ 0.(3.3)

Now we note that det(f(M1, . . . ,Mn)) � G(z) is a m-variate polynomial of degree at

42

most d2D. Thus to test Equation 3.1 for identity, it su�ces to go over (d2D)m

distinct values of Z variables.

Invertible image in white-box

We have shown that finding an invertible matrix in the image set of a

noncommutative ABP can be reduced to the PIT of a product of ROABPs (see

Equation 3.2). It is known that the white-box PIT of a ROABP is reducible to

identity testing of a low-degree univariate (for more details, see [For14, Section 6.3]).

Now the algorithm to find an invertible image of a noncommutative ABP follows

from the deterministic poly(s, n, d)-time white-box PIT algorithm for a product of

ROABPs.

Invertible image of inhomogeneous polynomial

In case, the given ABP of degree d is not homogeneous, then the substitution

xi = tMi is performed where t is a commutative variable. The words (monomials) of

degree-i produce terms with t-degree i. Now det(f(tM1, tM2, . . . , tMn)) will have a

term with t-degree d2 which is produced by the identity permutation and no other

permutations can produce a term of same t-degree2. Thus using Forbes-Shpilka

generator G, we know that for some
¯
↵ = (↵1, . . . ,↵m), the polynomial

det(f(tM1, tM2, . . . , tMn)) � G|
¯
↵ is a nonzero polynomial in t of degree d2 and hence

it su�ces to try the d2 + 1 distinct substitution for t such that the final output

becomes nonzero on one such substitution t = �.
2
This can be easily seen by observing that the non-diagonal entries of the output matrix contain

the terms with t degree d� 1.

43

3.2 Trace of Image of Noncommutative ABPs

We next turn to another algorithmic question related to the image set of

noncommutative polynomials motivated by the following interesting theorem due to

Brešar and Klep [BK08].

The Brešar-Klep Theorem

It categorizes the span of the image set of noncommutative polynomials.

Theorem 10 (Brešar-Klep Theorem[BK08]). Let f 2 FhXi be any noncommutative

polynomial, where F is any field of zero characteristic. Then precisely one of the

following is true:

1. Imk(f) = 0, which means f is an identity for Matk(F).

2. The span of Imk(f) consists of all scalar multiples of the identity matrix Ik

(i.e., f is central for Matk(F)).

3. The span of Imk(f) is all trace zero matrices over Matk(F).

4. The span of Imk(f) is Matk(F), the full matrix algebra.

The Brešar-Klep theorem naturally raises an algorithmic question: Given a

noncommutative polynomial f and the matrix algebra Matk(F), to e�ciently

determine which of the four cases occur.

Proposition 1. Let f 2 QhXi be a noncommutative polynomial of degree d over

rationals given by an arithmetic circuit of size s. For any matrix algebra Matk(Q)

we can check in randomized poly(s, d, k)-time which of the four conditions of the

Brešar-Klep theorem hold for f over Matk(Q).

44

This is easily observed by substituting the noncommuting variables with generic

k ⇥ k size matrices and evaluating the commuting generic variables randomly. We

show the following result which yields an e�cient deterministic algorithm.

Theorem 11. Given a noncommutative ABP A of size s computing a polynomial

f 2 FhXi of degree d, there is a deterministic poly(n, s, d)-time algorithm to check if

Imk(f) is trace zero over Matk(F) for all k � d. If A is given by black-box access,

there is a deterministic (ns)O(log d)-time algorithm to check if Imk(f) is trace zero for

all k � d where |F| � poly(n, s, d).

The above theorem yields a deterministic polynomial-time algorithm to check which

of the four conditions of the Brešar-Klep theorem holds for matrix algebras of

dimension k � d for a noncommutative polynomial f given by an ABP.

We now prove Theorem 11. By the following lemma, it su�ces to show it for

homogeneous ABPs. Trace(Imk(f)) is the set of traces of the matrices in Imk(f).

Use
¯
M to denote the matrix tuple (M1, . . . ,Mn). We say Trace(Imk(f)) = {0} if

and only if Trace(f(
¯
M)) = 0 for each

¯
M 2 Matn

k
(F).

Lemma 2. Let f 2 FhXi be a noncommutative polynomial of degree d, and fi be its

homogeneous degree-i component for each i 2 {0, 1, . . . , d}. Then for all k 2 N,

Trace(Imk(f)) = {0} if and only if Trace(Imk(fi)) = {0} for each i.

Proof. Consider the substitution xi 7! z · xi for a commuting variable z. We can

now write,

Trace(f(zM1, . . . , zMn)) = Trace

dX

i=1

fi(¯
M)zi

!
=

dX

i=1

Trace(fi(¯
M))zi.

Now if Trace(Imk(fi)) = {0} for each i 2 [d], then clearly Trace(Imk(f)) = {0}. Now

suppose Trace(Imk(fi)) 6= {0} for some i. Then there is a matrix tuple

¯
M = (M1, . . . ,Mn) such that Trace(f(zM1, . . . , zMn)) is a nonzero univariate in z.

45

Hence, there is a substitution z = ↵ for which Trace(f(↵M1, . . . ,↵Mn)) 6= 0 which

shows that Trace(Imk(f)) 6= {0}.

Proof of Theorem 11. By Lemma 2 and the fact that homogeneous components

can be extracted e�ciently both in the black-box and in the white-box setting, we

can assume the given ABP is homogeneous of degree d w.l.o.g. First, we prove that

if Imk(f) is trace zero for some k � d, then the coe�cients of f have the following

symmetry property.

Lemma 3. For a homogeneous polynomial g 2 FhXi of degree d,

Trace(Imk(g)) = {0} at any dimension k � d, if and only if for every monomial m

we have
P

�2Cd
[m�]g = 0, where Cd = {�0, �1, . . . , �d�1} is the set of all d cyclic

shift permutations.

Proof. Let Md be the set of all monomials in g. Let M 0
d

denote a maximal subset of

Md constructed as follows: Group the monomials in Md such that monomials in the

same group are cyclic shifts of each other. Now define M 0
d

by taking one monomial

from each such group. For any matrix tuple
¯
M , by the cyclic property of trace, for

each � 2 Cd, Trace(m�(
¯
M)) is same. Hence, we may write,

Trace(g(
¯
M)) =

X

m2Md

[m]g · Trace(m(
¯
M)) =

X

m2M 0
d

X

�2Cd

[m�]g

!
· Trace(m(

¯
M)).

If for every monomial m we have
P

�2Cd
[m�]g = 0 then Trace(Imk(g)) = {0} for

each k.

For the converse direction, suppose there is a monomial m such that
P

�2Cd
[m�]g 6= 0. Let m = xi1xi2 . . . xid

. We now construct an automaton that

accepts only those degree-d words which are the cyclic shifts of m. Below, we give

an illustrative example for d = 6.

The permutation �0 is the identity permutation. When the start state and final state

46

1 2 3 4 5 6

xi1 xi2 xi3 xi4 xi5

xi6

Figure 3.1: Example of the automata when d = 6.

are both j 2 [d], then only the word m�j�1 = xijxij+1 · · · xid
xi1xi2 · · · xij�1 is accepted

(also note that if start state and final state are di↵erent then no word of length d is

accepted). The transition of the automata gives us d⇥ d matrices Mxi1
, . . . ,Mxid

where Mxij
(k, `) = 1 if k = j and ` = j + 1 (mod d) and 0 otherwise. Substituting

xij by Mxij
and setting Mxt = [0] if xt 62 {xi1 , xi2 . . . xid

}, we observe that the

matrix g(Mx1 , . . . ,Mxn) is a diagonal matrix and the (j, j)th entry is [m�j�1]g,

g(Mx1 ,Mx2 , . . . ,Mxn) =

2

66666664

[m�0]g 0 · · · 0

0 [m�1]g · · · 0

...
...

. . .
...

0 0 · · · [m�d�1]g

3

77777775

,

and thus Trace(g(Mx1 , . . . ,Mxn)) =
P

�2Cd
[m�]g 6= 0.

Remark 2. Notice that, Lemma 3 holds only when k � d. One could improve the

dependency by constructing an automaton of smaller size accepting a word and all

its cyclic shifts only. However, it is not clear to us how to improve this construction.

As a corollary of Lemma 3, we obtain the following.

Corollary 1. For all matrix substitution of dimension k � d, Trace(Imk(g)) = {0}

if and only if
P

�2Cd
g� ⌘ 0.

Proof. Observe that g� =
P

m
[m]g ·m�. Hence,

X

�2Cd

g� =
X

�2Cd

X

m

[m]g ·m� =
X

m

X

�2Cd

[m�]g

!
·m.

47

Then the proof follows from Lemma 3.

Now we would like to check if the input polynomial f computed by the given ABP

has the above property. It turns out that if the input polynomial f is given as a

white-box, a combination of Lemma 1 and Theorem 2 can easily yield a

deterministic polynomial-time algorithm.

The White-Box Case

By Lemma 1 we see that, for each � 2 Cd, f� can be computed by an algebraic

branching program of size O(s2) and hence f̂ =
P

�2Cd
f� can be computed by an

algebraic branching program of size poly(s, d). Given the algebraic branching

program A the algorithm computes the algebraic branching program Â =
P

�2Cd
f�

using Lemma 1 and runs the algorithm of Raz and Shpilka [RS05] on the ABP Â

and outputs trace zero if Â ⌘ 0. The correctness of the algorithm follows from

Lemma 3, and the run time of the algorithm is poly(n, s, d).

The Black-Box Case

The main idea is to obtain black-box access to SM(f̂) where f̂ =
P

�2Cd
f�

(following notation of Corollary 1). Thereafter, one can use the standard hitting

set [FS13] for set-multilinear ABPs over the variable partition

Y = Y1 t Y2 t · · · t Yd. Now, for each i 2 [n], we construct the d⇥ d matrix Mi as

shown in the proof of Theorem 9 (If k > d, we adjust each Mi by padding zeros).

Lemma 4. Trace(f(M1, . . . ,Mn)) = SM(f̂).

The proof of the lemma follows quite easily.

Using Lemma 1, the ABP size of f̂ is at most poly(s, d). Also we conclude that

SM(f̂) has a set-multilinear ABP of depth d in the variable partition

48

Y1 t Y2 t · · · t Yd of size at most poly(s, d). Now the algorithm substitutes yi,j from

the hitting set of the set-multilinear ABPs of size s over the variable partition

Y1 t Y2 t · · · t Yd with d many layers [FS13] and evaluates the polynomial on the

matrices Mi and checks whether the trace of the output matrix is always zero or not.

The correctness follows from Corollary 1 and the running time follows from

Theorem 4 when applied to the set-multilinear case.

Corollary 2. Let f be a degree-d noncommutative polynomial in FhXi computed by

a size s ABP. For k � d, when f is given by an ABP (the white-box case) we can

check in deterministic polynomial time which of the four cases of the Brešar-Klep

theorem holds for f . For k � d, when f is given only by black-box access, we can

check all the possibilities in deterministic quasi-polynomial-time.

Proof. If k � d, by the Amitsur-Levitzki theorem a nonzero f is not an identity for

Matk(F). To rule out the second case notice that if f is a central polynomial for

Matk(F) then g = zf � fz is an identity for Matk(F) where z is a new

noncommutative variable. This is also not possible by Amitsur-Levitzki theorem as

degree of zf � fz is d + 1 and as a nonzero polynomial it cannot vanish on Matk(F)

as k � (d + 1)/2 + 1. If Imk(f) is trace zero over Matk(F), then the span of the

image of f can not be Matk(F) which can be checked e�ciently by Theorem 11.

Otherwise, if Imk(f) is not trace zero over Matk(F), its span must be the entire

algebra Matk(F) as promised by the Brešar-Klep theorem.

3.3 Special Instances of Rational Identity

Testing

In general, a noncommutative rational expression of inversion height one can be

obtained as the composition of a noncommutative polynomial with inverses of

49

noncommutative polynomials (following Bergman’s definition [Ber76]). This

naturally leads us to consider an easier case of rational identity testing for a

generalization of algebraic branching programs whose multi-edges are labeled by

a�ne linear forms or inverses of a�ne linear forms. Clearly, such ABPs compute

rational expressions of inversion height one in the free skew field. The rational

expression computed by the ABP is the sum over each source-to-sink path P of the

ordered product of a�ne linear forms or their inverses labeling P . The size of the

ABP is defined as the total number of nodes and multi-edges. For this model, a

deterministic quasi-polynomial time white-box algorithm and a randomized

quasi-polynomial time black-box algorithm follow respectively from

[GGOW16, IQS18] and [DM17]. In this section, we obtain a deterministic

polynomial time white-box algorithm and a deterministic quasi-polynomial time

algorithm for the black-box RIT.

The algebraic branching program (ABP) we consider are layered directed acyclic

graphs. Layer 0 has a single source node and layer d + 1 has a single sink node. The

ABP has directed multi-edges from nodes in layer i to layer i + 1 (we allow multiple

edges between the same pair of nodes), where each edge is labeled by some a�ne

linear form or the inverse of an a�ne linear form. The size s of an ABP is the sum

of the number of nodes and edges in it. The rational expression computed by the

ABP is the sum over each source-to-sink path P of the ordered product of a�ne

linear forms or their inverses labeling P .

Theorem 12. Given black-box access to an ABP of size s where each edge is labeled

by an a�ne linear form or inverse of an a�ne linear form over Q, there is a

deterministic (ns)O(log(ns))-time algorithm to decide if the rational expression

computed by it is zero in Q2X3. If such an ABP is given as a white-box then there

is a deterministic poly(s, n)-time algorithm for it.

In this section, we prove Theorem 12. In the generalized ABP model, we allow

50

directed multi-edges from nodes in layer i to layer i + 1 (we allow multiple edges

between the same pair of nodes), where each edge is labeled by some a�ne linear

form or the inverse of an a�ne linear form. Recall that, the size s is the total

number of nodes and the multi-edges present in the ABP.

A simple fact about formal power series that we use is replacing the rational

expression (1� x)�1 by the equivalent power series
P

k�0 x
k, denoted as x⇤ which is

used to convert an ABP where edges are labeled by linear forms and its inverses to

an automaton computing a formal series. In general, an a�ne linear form may have

zero constant terms. In order to apply the above, we require a linear shift

xj 7! ↵j � xj, j 2 [n], enabling power series expansion of the inverses of the linear

forms. The following lemma explains how to find such linear shifts e�ciently.

Lemma 5. Let F be a field such that |F| � nr + 1. We can e�ciently construct a

subset S ✓ Fn of size nr + 1 such that for any r a�ne linear forms L1, . . . , Lr over

X, there is a point
¯
↵ 2 S such that for all i, Li(¯

↵) 6= 0.

Proof. By substituting xi by yi, we obtain the univariate polynomial

p(y) = L1(y)L2(y) . . . Lr(y). The degree of the polynomial p is bounded by nr.

Hence, for any set T of nr + 1 distinct points from F, there is a t 2 T such that

p(t) 6= 0. The set S can be defined as S = {(t, t2, . . . , tn) : t 2 T}.

The following lemma shows that rational identity testing of such ABPs is e�ciently

reducible to zero-testing of a weighted automaton computing a formal series in

F�X�.
Lemma 6. Let A be a generalized ABP of size s with each edge labeled by either an

a�ne linear form or the inverse of an a�ne linear form, computing a rational

expression f in F2X3. Let r be the total number of multi-edges of A. Then, there

is an automaton A0 without ✏-transitions of size at most s + r computing a formal

51

series in F�X� such that f is an identity in F2X3 if and only if A0 computes a

zero series in F�X�. Moreover, A0 can be constructed in poly(n, s, r) time.

Proof. We present the proof in two parts. We first explain the automaton

construction. Then, we show that this construction is identity preserving.

Construction of the Automaton

Let L1, L2, . . . , Lr be all the linear forms appearing as Li or L�1
i

in A. By Lemma 5,

we can e�ciently compute a set S ✓ Fn of size nr + 1 such that there exists a point

¯
↵ 2 S such that for each i 2 [r], Li(↵1 � x1, . . . ,↵n � xn) has a nonzero constant

term. Fix such a tuple
¯
↵ = (↵1,↵2, . . . ,↵n) 2 S. We apply the linear shift

xj 7! ↵j � xj to each edge label of A, and let g denote the rational expression in

F2X3 computed by the resulting ABP.

As each Li(↵1 � x1, . . . ,↵n � xn) has a constant term, we may write it as �i(1� L̃i),

for a homogeneous linear form L̃i, where �i 6= 0. We can convert (1� L̃i)�1 to the

formal power series L̃⇤
i

to obtain L�1
i

= ��1
i

L̃⇤
i
. Thus, any edge labeled L�1

i
can be

labeled by a Kleene-⇤ expression. From this observation, we now show that g can

also be converted to a formal series in F�X� computed by a small automaton.

This is a standard adaptation of Kleene’s original construction. We locally

substitute each ⇤-expression with a small automaton. We illustrate this with an

example. Consider the edge shown in Figure 3.2 having linear form and inverses. In

Figure 3.3, we convert the linear forms with inverses to ⇤-expressions by the linear

shift xj 7! 1� xj. Finally, in Figure 3.4, we show the transitions of an equivalent

automaton by replacing the ⇤-rational expressions with their corresponding

automata.

It is useful to consider the transition matrix M for the final automaton. In the

52

0 1
2x1 � x2 + (x1 � 2x2)

�1
� 2(x1 + x2)

�1

Figure 3.2: Edge Labels having linear form and inverses

0 1
1� 2x1 + x2 � (�x1 + 2x2)

⇤
� (

x1
2 +

x2
2)

⇤

Figure 3.3: Edge Labels rewritten as ⇤-rational expression after applying the shift
xi 7! 1� xi.

current example, this is given by the following matrix.

M =

2

66666664

0 �1 �1 1� 2x1 + x2

0 �x1 + 2x2 0 1

0 0 x1+x2
2 1

0 0 0 0

3

77777775

.

Clearly, applying the above transformation to each edge of the input ABP A

produces an automaton Ã of size at most s + r, because we introduce a new node in

the automaton for each L�1 term. Moreover, Ã can be constructed in poly(n, s, r)

time.

Claim 1. Ã computes a valid formal series in F�X�.
Proof of Claim. Consider the transition matrix of the automaton A0

corresponding to the ✏-transitions. To show that Ã computes a valid formal series in

F�X�, it su�ces to prove that
P

k
Ak

0 converges (Proposition 2 in [LS12]). As the

automaton introduces self-loops labeled by homogeneous linear forms only, and it

does not have back-edges, the matrix A0 is strictly upper triangular (see the above

example). Hence, A0 is nilpotent and
P

k
Ak

0 converges.

As mentioned in Chapter 2, by a standard construction we can compute an

automaton A0 without ✏-transitions equivalent of Ã [LS12]. The overall time to

53

0 31

2

1� 2x1 + x2

�x1 + 2x2

�1 1

�1

(x1 + x2)/2

1

Figure 3.4: Edge Labels replaced by an appropriate automaton.

construct A0 is bounded by poly(n, s, r).

Identity Preserving

Claim 2. A 6⌘ 0 in F2X3 if and only if A0 does not compute a zero series in

F�X�.
Proof of Claim. Let f be a nonzero rational expression in F2X3 computed by A.

Then, for some t 2 N and matrix tuple (M1, . . . ,Mn) 2 (Matt(F))n, we have

f(M1, . . . ,Mn) 6= 0. Therefore, g = f(↵1 � x1, . . . ,↵n � xn) is also a nonzero

rational expression in F2X3 as g(M 0
1, . . . ,M

0
n
) 6= 0, where M 0

j
= ↵jIt �Mj for each

j 2 [n].

To prove that A0 computes a nonzero series, it su�ces to show that for some matrix

substitution A0 is defined and outputs a nonzero matrix on that substitution. In g,

each a�ne linear form with inverse looks like �i(1� L̃i)�1 where �i is nonzero and

L̃i is a homogeneous linear form. Now, let Ni = L̃i(M 0
1, . . . ,M

0
n
). Since g is defined

and nonzero at the point (M 0
1, . . . ,M

0
n
), the matrix (It �Ni) is invertible for each i.

But it may happen that for some j 2 [r], the matrix
P

k
Nk

j
does not converge and

hence A0 is not defined at this matrix tuple. To avoid this problem, we can choose

� 2 Q su�ciently small ensuring that g(�M 0
1, . . . , �M

0
n
) is still defined and nonzero,

54

moreover, for each i 2 [r], the matrix
P

k
Nk

i
, thus obtained, also converges. The

following fact is classical and a proof of it is, for example, in [Wer05].

Fact 1. For any matrix B over Q, the Neumann series
P

k
Bk converges if the

spectral norm of B is less than 1.

Observation 1. Let g be a rational expression in F2X3 and suppose

g(M 0
1, . . . ,M

0
n
) 6= 0 for some t⇥ t matrices M 0

i
. Then there are only finitely many

� 2 F for which g(�M 0
1, . . . , �M

0
n
) is not defined or g(�M 0

1, . . . , �M
0
n
) = 0.

Proof. Let us think the parameter � as indeterminate and note that the output

matrix g(�M 0
1, . . . , �M

0
n
) is a t⇥ t matrix, where each entry is a commutative

rational function of form h1
h2

and h1 and h2 are univariate polynomials in �. The

degree of each such h1, h2 is some finite value depending on the rational expression

g. Clearly, it is not a zero matrix in Matk(F(�)), as for � = 1, it is nonzero. Hence,

to ensure that g(�M 0
1, . . . , �M

0
n
) is defined and nonzero, it su�ces to avoid the roots

of the univariates of each entry.

By Observation 1, we can choose � small enough such that, for each i 2 [r], spectral

norm of Ni is less than 1. By Fact 1, the automaton A0 is also defined and nonzero

on (�M 0
1, . . . , �M

0
n
). Therefore, A0 computes a nonzero series.

Conversely, suppose that A0 computes a nonzero series in F�X�. Consider any word

w such that [w]A0
6= 0. Then consider the automaton A that accepts only the word

w and let A1, . . . , An be the transition matrices of the automaton A for the

variables x1, . . . , xn. It can be easily observed that A0(A1, . . . , An) is well-defined

and a nonzero matrix whose top right-most entry is [w]A0 [AMS10] (see Chapter 2

for details). Since whenever A0 converges on a point, so does g, we conclude that

g(A1, . . . , An) 6= 0, which also implies that f(↵1It � A1, . . . ,↵nIt � An) 6= 0. Hence

f is nonzero in F2X3.

Now the proof of the lemma follows.

55

Proof of Theorem 12. We now present the algorithms for white-box and

black-box models.

The White-Box Case

Let r be the total number of linear forms or inverses of linear forms in A. Clearly, r

is bounded by s. Using Lemma 6, we reduce the problem of deciding whether the

ABP A is zero in F2X3 to the problem of deciding whether the automaton A0 is

computing a zero series or not in F�X�. From Lemma 6, A0 is of size W which is at

most 2s. Now invoking Theorem 8, we conclude that A0
6⌘ 0 if and only if there is a

word of length at most W � 1 which has nonzero coe�cient in A0. Consider the

corresponding transition matrix MA0 of A0. For each ` W � 1, we construct the

branching program B(`) =
¯
uTM `

A0
¯
v where

¯
u,

¯
v are the vectors corresponding to the

initial states and final states respectively. As A0 does not have any ✏-transitions, B(`)

computes words in A0 of length exactly `. It su�ces to check for each ` W � 1,

whether B(`) computes an identically zero polynomial. The identity testing

algorithm is obtained by applying Theorem 2 on the ABPs B(`). The running time

of the algorithm is clearly bounded by poly(n, s).

The Black-Box Case

We now present a deterministic quasi-polynomial time black-box algorithm. Let r

be the total number of linear forms or inverses of linear forms in A. Clearly, r is

bounded by s. Lemma 5 yields a set S of size nr + 1 such that for some
¯
↵ 2 S, the

linear shift xj 7! ↵j � xj ensures that for every edge label, each of the r many L�1

in A, the linear form L has a nonzero constant term. Let us fix such
¯
↵ 2 S. From

the proof of Lemma 6, we conclude that there is an automaton A0 of size at most 2s

such that A is zero in F2X3 if and only if A0 computes a zero series in F�X�.

56

Let A0(`) denotes the series computed by A0 truncated to the words of length at most

`. Let W = 2s. Now, by Theorem 8, A0
6⌘ 0 if and only if A0(W�1)

6⌘ 0. We now

discuss the e↵ect of HW 2,W�1,n, hitting set from Theorem 4 on A0. It is well known

from the proof of Theorem 4 that for each (h1, . . . , hn) 2 HW 2,W�1,n, each hi is a

W ⇥W matrix of the following form [FS13]:

hi =

2

66666666664

0 a1 0 · · · 0

0 0 a2 · · · 0

...
...

.
...

0 0 · · · 0 aW�1

0 0 · · · 0 0

3

77777777775

.

Using the shape of the matrices hi, it can be easily checked that for all words

w 2 X⇤ of length at least W , w(h1, . . . , hn) = 0. Hence, evaluating A0 at some

(h1, . . . , hn) 2 HW 2,W�1,n is equivalent to evaluating A0(W�1) at (h1, . . . , hn). As

already discussed in the previous section for white-box case, we can construct the

branching program B(`) =
¯
uTM `

A0
¯
v computing words of length exactly ` in A0, for

each ` W � 1, where MA0 is the corresponding transition matrix of automaton A0

and
¯
u,

¯
v are the vectors corresponding to the initial states and final states

respectively. Hence, A0(W�1) can be computed by an ABP of width at most W 2.

Therefore, A0 computes a zero series if and only if for each (h1, . . . , hn) 2 HW 2,W�1,n,

A0(h1, . . . , hn) outputs a zero matrix. Hence, by evaluating A on

(↵1IW � h1, . . . ,↵nIW � hn) for each ↵ 2 S and (h1, . . . , hn) 2 HW 2,W�1,n, we can

decide A is zero in F2X3 or not.

57

Pseudocode for Theorem 12

The White-Box Algorithm

INPUT: An ABP A of of size s whose multi-edge labels are either linear forms or

inverse of linear forms over X.

1. Using Lemma 5, construct a set S ✓ Fn of size at most ns + 1. For each

¯
↵ 2 S, apply the shift xj 7! ↵j � xj for 1 j n to the edge labels of A. Fix

an
¯
↵ 2 S such that Li(¯

↵) 6= 0 for each i 2 [s].

2. Construct automaton A0 as described in Lemma 6 of size W which is at most

2s.

3. For each ` W � 1, construct ABP B(`) which computes words in A0 of

length exactly `.

(a) For each `, use Theorem 2 to check if B(`)
⌘ 0. In case a nonzero is

found, report that A 6⌘ 0.

4. If for all ` W � 1, B(`)
⌘ 0 then declare that A ⌘ 0.

The Black-Box Algorithm

INPUT: A black-box containing an ABP A of of size s with each multi-edge label

as a linear form or inverse of linear form.

1. Let HW 2,W�1,n ⇢ Matn
W

(F) be the hitting set from Theorem 4 for ABP of

width W 2 and W � 1 many layers where W = 2s.

2. Using Lemma 5, construct a set S ✓ Fn of size ns + 1. For each

¯
↵ 2 S,

¯
h 2 HW 2,W�1,n, construct the matrices Mi = ↵iIW � hi for 1 i n.

3. Query the black-box at the points (M1,M2, . . . ,Mn) constructed above.

58

4. If the black-box ever outputs a nonzero matrix then declare that A 6⌘ 0.

Otherwise, declare that A ⌘ 0.

Conclusion

We have explored the algorithmic questions related to the invertibility and trace of

the image of noncommutative polynomials in this chapter. Our algorithm to obtain

an invertible image of a noncommutative ABP in a black-box is a special instance of

derandomizing Amitsur’s theorem on universal division algebra. We also obtain a

black-box quasi-polynomial RIT algorithm for ABP with inverses. The main idea is

to use the connection of zero-testing of an algebraic automaton to the RIT of this

model. To generalize this idea of using algebraic automata for a more general model

would be interesting.

59

60

Chapter 4

E�cient Identity Testing of Free

Group Algebras

In the last chapter, we have studied the invertibility and trace of the image of

noncommutative polynomials. In this chapter, we continue the study of the image of

noncommutative polynomials in a more general setting. Let f be a noncommutative

polynomial in the free noncommutative ring Fhx1, . . . , xn, y1, . . . , yni. Consider the

image of f obtained by mapping yi ! x�1
i

for each i. The resulting object is an

F-linear combination of elements of the free group algebra generated by {x1, . . . , xn}.

In this chapter, we explore the problem of identity testing for elements of this free

group algebra with black-box access. In order to evaluate the free group algebra

expression over d⇥ d matrices, we must ensure that each matrix substitution Mi for

xi is invertible. This restriction imposes di�culties in obtaining an identity testing

algorithm for such expressions. In this chapter, we first formally define such

expressions as the free group algebra expressions and define a notion of the degree

and sparsity of such expressions. We then show that the known identity testing

algorithms for noncommutative polynomials can actually be generalized for free

group algebra expressions (i.e. expressions with a polynomially-bounded degree and

61

exponentially-bounded sparsity).

Free Group Algebras Let (X [X�1)⇤ denote the words generated by n (free

group) generators X = {x1, x2, . . . , xn} and their inverses

X�1 = {x�1
1 , x�1

2 , . . . , x�1
n
}.

Given a word w 2 (X [X�1)⇤, we can reduce it repeatedly by replacing with 1 all

occurrences of xix
�1
i

or x�1
i
xi in it, 1 i n. We call w 2 (X [X�1)⇤ a reduced

word if we cannot reduce it any further.

Formally, this reduction process is a function red : (X [X�1)⇤ ! � where red(w) is

the reduced word corresponding to w. Two words w1, w2 2 (X [X�1)⇤ are

equivalent if red(w1) = red(w2). The elements of the free group algebra F[�] can be

expressed as a finite linear combination

f =
X

w

↵ww, ↵w 2 F,

where each w 2 (X [X�1)⇤ is a reduced word. The degree of a free group algebra

function f is defined as the maximum length of a word w such that ↵w 6= 0.

Moreover, f has sparsity s if the number of reduced words w with ↵w 6= 0 is s.

Clearly, by linearity we can extend the mapping to red : FhX [X�1
i ! F[�].

Two expressions f1, f2 2 FhX [X�1
i are equivalent in F[�] if and only if

red(f1) = red(f2). We also use the notation [w]f to denote the coe�cient ↵w of the

reduced word w in the function f .

Connection to Rational Identity Testing: The complexity of identity testing

for general rational circuits remains open. For example, given a noncommutative

62

rational circuit involving addition, multiplication, and division gates, no e�cient

algorithm (even randomized!) is known to check if the resulting a rational function

is zero in the free skew-field. To precisely formulate the problem, we define classes of

rational expressions based on Bergman’s definition [Ber76] of inversion height which

we now explain with some notation.

Definition 10. [Ber76] Let X be a set of free noncommuting variables.

Polynomials in the free ring FhXi are defined to be rational expressions of height 0.

A rational expression of height i + 1 is inductively defined to be a polynomial in

rational expressions of height at most i, and inverses of such expressions.

Let Ed,0 denote all polynomials of degree at most d in the free ring FhXi. We

inductively define rational expressions in Ed,i+1 as follows: Let f1, f2, . . . , fr and

g1, g2, . . . , gs be rational expressions in Ed,i in the variables x1, x2, . . . , xn. Let

f(y1, y2, . . . , ys, z1, z2, . . . , zr) be a degree-d polynomial in FhXi. Then

f(g1, g2, . . . , gs, f
�1
1 , f�1

2 , . . . , f�1
r

) is a rational expression (of inversion height i + 1)

in Ed,i+1.

As already mentioned in the last chapter, black-box identity testing for rational

expressions is not well understood in general. In particular, no e�cient randomized

algorithm is known even for identity testing of the class Ed,1. One source of di�culty

is the subtle behavior of rational expressions when evaluated on matrix algebras.

For example, a surprising result of Bergman [Ber76, Proposition 5.1] shows that

there are rational expressions that are nonzero over a dense subset of 2⇥ 2 matrices

but evaluate to zero on dense subsets of 3⇥ 3 matrices.

In this connection, we note that Hrubeš and Wigderson [HW15] have observed that

testing if a correct rational expression � (see [HW15], Section 2) is not identically

zero is equivalent to testing if the rational expression ��1 is correct. I.e. testing if a

correct rational expression of inversion height i is identically zero or not can be

reduced to testing if a rational expression of inversion height i + 1 is correct or not.

63

Furthermore, testing if a rational expression of inversion height one is correct can be

done by applying (to each inversion operation in this expression) Amitsur’s theorem

on universal division algebra (see Chapter 3 for more details) which implies that a

nonzero degree 2d� 1 noncommutative polynomial evaluated on d⇥ d matrices will

be invertible with high probability. However, this does not yield an e�cient

randomized identity testing algorithm for rational expressions of inversion height

one. Because that requires testing the correctness of expressions of inversion height

two which is a question left open in their paper [HW15, Section 9].

We also note that the di�culty of designing even an e�cient randomized algorithm

for the class of noncommutative rational circuits of inversion height 1 comes as no

surprise. As already mentioned, designing a polynomial-time, even randomized, PIT

algorithm for polynomial-sized noncommutative circuits is an interesting open

problem. As the class of noncommutative circuits is a sub-class of rational circuits

of inversion height one, RIT for inversion height one also yields a PIT algorithm for

general circuits.

Elements of F[�] are clearly a special kind of rational expressions of inversion height

one. Precisely, a rational circuit where we allow the inverse gates only at the

bottom-most layer computes a free group algebra expression.

Proposition 2. F[�] ⇢ [d>0Ed,1.

We note that Proposition 2 is a strict containment. A rational function of inversion

height one is not necessarily a free group algebra function. For example, consider

(1�x)�1. Suppose there is a free group algebra function f =
P

k

i=1 ↵ixi +
P

k
0

i=1 �ix�i

for some finite k, k0 such that f = (1� x)�1. Now, (1� x)�1 =
P

i�0 x
i. Let e be

the maximum exponent such that x�e is in the support of f . Now, multiplying both

sides by xe we have, xef =
P

i�e
xi which can not be true.

64

4.1 An Amitsur-Levitzki Type Theorem

First we show an Amitsur-Levitzki type theorem [AL50] for F[�]. Let A be an

associative algebra with identity over F. An element f 2 F[�] is an identity for A if

f(a1, . . . , an) = 0,

for all ai 2 A such that a�1
i

is defined for each i 2 [n].

Theorem 13. Let F be any field of characteristic zero and f 2 F[�] be a nonzero

free group algebra function of degree at most d. Then f is not an identity for the

matrix algebra Mat2d(F).

Remark 3. We have stated our results for fields of characteristic zero only for the

simplicity of the proof. With suitable modifications, this result extends to fields of

positive characteristics as discussed in Section 4.3.

The following corollary is an immediate consequence.

Corollary 3 (black-box identity test). There is a black-box randomized poly(n, d)

identity test for degree-d free group algebra expressions in F[�].

The aim of this section is to prove that a nonzero free group algebra expression

f 2 F[�] of degree d does not vanish on the algebra of 2d⇥ 2d matrices over F. This

will give us a randomized polynomial-time black-box identity test for such

expressions.

As explained in the previous section, our proof will be guided by automata-theoretic

ideas. The transition matrix Mi for variable xi need to be chosen keeping in mind

that x�1
i

will be substituted by M�1
i

.

Definition 11. Define a map ' : F[�]! F[Y, Z] such that ' is identity on F, and

65

for each reduced word w = xb1
i1
xb2
i2
· · · xbd

id
,

'(xb1
i1
xb2
i2
· · · xbd

id
) = ⇠1⇠2 . . . ⇠d,

where ⇠j = yij ,j if bj = 1 and ⇠j = zij ,j if bj = �1. Here, the yij and zij are all

commuting variables.

The map ' is now defined by linearity on all free group algebra expressions in F[�].

We observe some properties.

1. The map ' is injective on the reduced words in (X [X�1)⇤. I.e., it maps each

reduced word w 2 (X [X�1)⇤ to a unique monomial over the commuting

variables Y [Z.

2. Consequently, ' is identity preserving. An expression f in F[�] is identically

zero if and only if its image '(f) is the zero polynomial in F[Y, Z].

3. ' preserves the sparsity of f . That is, f in F[�] is s-sparse if and only if '(f)

in F[Y, Z] is s-sparse.

4. Given the image polynomial '(f) 2 F[Y, Z] in its sparse description (i.e., as a

linear combination of monomials), we can e�ciently recover the sparse

description of f 2 F[�].

Our goal now is to implement the map ' through matrix substitutions Mi for the

variables xi. As explained before, it is useful to think of matrix Mi as the transition

matrix on the input symbol xi of a substitution automaton. In any reduced word w

the automaton must replace xi occurring in position j by yij, and must replace x�1
i

by zij.

This transition is handled by the following 2⇥ 2 matrix and its inverse. These are

66

like the basic “building blocks” for the transition matrix Mi:

2

64
0 yi,j

1
zi,j

0

3

75 ,

and its inverse 2

64
0 zi,j

1
yi,j

0

3

75 .

In order to ensure that each Mi has a block-diagonal structure, we will introduce a

new variable x0 to play the role of a separator between the letters of a reduced word

by defining a new encoding of the free group algebra expressions. Let �0 be the free

group generated by {x0, x1, . . . , xn}.

Definition 12. The encoding � : F[�]! F[�0] is defined by substituting for each xi

the word xi

0xixi

0 (therefore, x�1
i

by x�i

0 x�1
i
x�i

0).

Consider a degree-d reduced word w = xb1
i1
xb2
i2
· · · xbd

id
2 �, bi 2 {�1, 1}. Then,

�(w) = xb1i1
0 xb1

i1
xb1i1+b2i2
0 · · · x

bd�1id�1+bdid
0 xbd

id
xbdid
0 .

The following observation shows that � is an identity preserving map.

Observation 2. For any f1, f2 2 F[�], f1 6= f2 if and only if �(f1) 6= �(f2).

Proof. It su�ces to prove for every reduced word in (X [X�1)⇤, � is injective.

Consider two reduced words w1 and w2. We note that the x0 variable works as a

separator between the letters. Consequently, in �(w1) and �(w2), we have at least

one x0 or x�1
0 between any two letters of w1 and w2. Therefore, �(w1) 6= �(w2).

Two polynomials g, h 2 F[Y, Z] are said to be weakly equivalent if they have the

same support. That is, a monomial is nonzero in g if and only if it is nonzero in h.

67

For f 2 F[�], let f` denote the degree-` homogeneous part of f . For an n-tuple

¯
M = (M1,M2, . . . ,Mn) of t⇥ t invertible matrices Mi we denote by f

¯
M [1, t] the

(1, t)th entry of the matrix f(M1,M2, . . . ,Mn).

The next lemma is the main construction in this section.

Lemma 7. Let f 2 F[�] be a nonzero expression of degree d. There is an n-tuple of

2d⇥ 2d invertible matrices
¯
M = (M̃1, M̃2, . . . , M̃n) whose entries are either scalars,

or variables u 2 Y [Z, or their reciprocals 1/u, such that

f
¯
M [1, 2d] =

⇣
f(M̃1, . . . , M̃n)

⌘

1,2d
is a polynomial in F[Y, Z],

and is weakly equivalent to '(fd). Furthermore, for each degree-d reduced word

w = xb1
i1
xb2
i2
· · · xbd

id
in F[�],

(4.1) ['(w)]f
¯
M [1, 2d] = [w]f

d�1Y

j=1

(bjij + bj+1ij+1).

In other words, Equation 4.1 states that the coe�cient of the monomial '(w) in the

commutative polynomial f
¯
M [1, 2d] is an integer multiple of the coe�cient of the

reduced word w in the group algebra expression f , where the multiplicative factor is

explicitly given in the equation.

Proof. We first apply the �-map on f which means substituting for each variable xi

the word xi

0xixi

0. The purpose of the x0 variable has it as a separator between two

consecutive variables from {xi | i 2 [n]} (or their inverses). This separator variable

enables us to keep the transition matrices nicely structured. We now describe the

substitution automaton and corresponding (invertible) transition matrices. The run

of the substitution automaton on a �-encoded word �(w) is composed of two steps

that are applied in succession repeatedly: the encoding step and the skip step. The

encoding step deals with variables {x1, . . . , xn} and the skip step deals with x0.

68

Encoding Step: Recall the structure of the 2⇥ 2 building blocks for the

transition matrix. When the 2⇥ 2 block is the jth diagonal block in transition

matrix Mi for variable xi, the automaton moves from state 2j � 1 to state 2j

replacing xi at position j by yi,j, or x�1
i

at position j by zi,j . The transition matrix

Mi will be a block diagonal matrix with such 2⇥ 2 invertible blocks as the principal

minors along the diagonal:

M 0
i,j

=

2

64
0 yi,j

1
zi,j

0

3

75, Mi =

2

66666666664

M 0
i,1 0 0 . . . 0

0 M 0
i,2 0 . . . 0

0 0 M 0
i,3 . . . 0

...
...

...
. . .

...

0 0 0 . . . M 0
i,d

3

77777777775

.

M 0�1
i,j

=

2

64
0 zi,j

1
yi,j

0

3

75, M�1
i

=

2

66666666664

M 0�1
i,1 0 0 . . . 0

0 M 0�1
i,2 0 . . . 0

0 0 M 0�1
i,3 . . . 0

...
...

...
. . .

...

0 0 0 . . . M 0�1
i,d

3

77777777775

.

The corresponding transitions of the automaton are shown in Figure 4.1.

q1 q2 q3 q4

xi ! yi,1

x�1
i
! zi,1

xi, x
�1
i
! 1/zi,1, 1/yi,1

x1 ! yi,2

x�1
1 ! zi,2

x1, x
�1
1 ! 1/zi,2, 1/yi,2

Figure 4.1: The transition diagram of the automaton for xi variables for degree-4
functions

69

Skip Step: We now describe the transition matrix M0 for x0. It does not play

any role in the commutative encoding '. The substitution automaton will skip x0

(or x�1
0) with a nice structure-preserving invertible transition matrix. As explained

already, the purpose of x0 as a separator variable is to ensure that the matrices Mi

have a block-diagonal structure.

M 0
0 =

2

64
1 1

0 1

3

75, M0 =

2

666666666666664

1 0 0 . . . 0 0

0 M 0
0 0 . . . 0 0

0 0 M 0
0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . M 0
0 0

0 0 0 . . . 0 1

3

777777777777775

.

M 0�1
0 =

2

64
1 �1

0 1

3

75, M�1
0 =

2

666666666666664

1 0 0 . . . 0 0

0 M 0�1
0 0 . . . 0 0

0 0 M 0�1
0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . M 0�1
0 0

0 0 0 . . . 0 1

3

777777777777775

.

For any k 2 Z, M 0k
0 =

2

64
1 k

0 1

3

75, Mk

0 =

2

666666666666664

1 0 0 . . . 0 0

0 M 0k
0 0 . . . 0 0

0 0 M 0k
0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . M 0k
0 0

0 0 0 . . . 0 1

3

777777777777775

.

The corresponding transitions of the automaton is depicted in Figure 4.2.

70

q1 q2 q3 q4

x0 ! 1

x�1
0 ! �1

x�1
0 , x0 ! 1 x�1

0 , x0 ! 1 x�1
0 , x0 ! 1 x�1

0 , x0 ! 1

Figure 4.2: The transition diagram of the automaton for x0 variables for degree-4
functions

q1 q2j�1 q2j q2j+1 q2(j+1) q2d

· · ·

· · ·

xi ! yi,j

x�1
i
! zi,j

xi ! yi,j+1

x�1
i
! zi,j+1

x0 ! 1

x�1
0 ! �1

x�1
0 , x0 ! 1

x�1
0 , x0 ! 1

x�1
0 , x0 ! 1

x�1
0 , x0 ! 1

· · ·

· · ·

Figure 4.3: The transition diagram of the automaton

Correctness: Consider a degree-d reduced word w = xb1
i1
xb2
i2
· · · xbd

id
with nonzero

coe�cient in the expression f , where d = deg(f).

If xbi
i

occurs at position j in w, then the automaton (see Figure 4.3) substitutes it

by yij if bi = 1 or zij if bi = �1. We can compactly express the substitution by

I[bi=1]yi,j + I[bi=�1]zi,j,

where

I[bi=b] =

8
>><

>>:

1 if bi = b

0 otherwise.

Furthermore, for each position j 2 [d� 1], the adjacent pair x
bj

ij
x
bj+1

ij+1
in the reduced

word w produces x
bjij+bj+1ij+1

0 (after reduction) in �(w). Therefore, there is a scalar

factor of (bj · ij + bj+1 · ij+1) due to the product M
bjij

0 M
bj+1ij+1

0 . Consequently, it

71

follows that

⇣
w(M̃1, . . . , M̃n)

⌘

1,2d
=

d�1Y

j=1

(bjij + bj+1ij+1)
dY

j=1

(I[bj=1]yijj + I[bj=�1]zijj).

As ' is a linear map, the lemma follows.

4.1.1 Black-box identity test

Proof of Theorem 13. The proof follows easily from Lemma 7. Lemma 7 says

that if f 2 F[�] is nonzero of degree d then the (1, 2d) entry of the matrix

p(M0M1M0, . . . ,Mn

0 MnMn

0) is a nonzero polynomial in F[Y, Z]. Hence f can not be

an identity for M2d(F).

Proof of Corollary 3. The identity testing algorithm follows from Theorem 13.

We can randomly substitute for the variables in Y [Z from a suitably large finite

subset of F and apply the Polynomial Identity Lemma [Sch80, Zip79, DL78]. This

completes the proof of the Corollary 3.

4.1.2 Reconstruction of sparse expressions

If the black-box contains an s-sparse expression in F[�], we give a poly(s, n, d)

deterministic interpolation algorithm (which also gives a deterministic identity

testing for such expressions). We use a result of Klivans-Spielman [KS01,

Theorem 11] that constructs a test set in deterministic polynomial time for sparse

commutative polynomials, which are used for the interpolation algorithm.

Theorem 14 (reconstruction algorithm). Let F be a field of characteristic zero and

f 2 F[�] given by black-box be s-sparse and of degree-d. Then we can reconstruct f

in deterministic poly(n, d, s) time with matrix-valued queries to the black-box.

72

Proof. Let the black-box expression f be s-sparse of degree d. By Lemma 7, a

polynomial \'(Hd(f)) in F[Y, Z] is obtained at the (1, 2d)th entry of the matrix

f(M1, . . . ,Mn), where Mi 2 Mat2d(F[Y, Z]) is as defined in Lemma 7. By

Definition 11, '(f) 2 F[Y, Z] is s-sparse and has 2nd variables. Let H2nd,d,s be the

corresponding test set from [KS01] to interpolate a polynomial of degree d and

s-sparse over 2nd variables. Querying the black-box on M1(¯
h),M2(¯

h), . . . ,Mn(¯
h) for

each
¯
h 2 H2nd,d,s we can interpolate the commutative polynomial \'(Hd(f)) and

obtain an expression for \'(Hd(f)) =
P

s

t=1 cmtmt as a sum of monomials.

We will now adjust the extra scalar factors for each monomial in \'(Hd(f)) to obtain

'(Hd(f)). We can adjust this for each monomial as Lemma 7 shows that the extra

scalar factor for the word m = xb1
i1
xb2
i2
· · · xb`

i`
is just ↵'(m) =

Q
`�1
j=1(bj · ij + bj+1 · ij+1).

So we construct '(Hd(f)) =
P

s

t=1
cmt
↵mt

mt by removing the factors ↵mt for each

monomial mt. We now invert the map ' (using the 4th property of Definition 11) on

every monomial mt to obtain Hd(f) as a sum of degree d reduced words. This yields

the expression for highest degree homogeneous component of f . We can repeat the

above procedure on f �Hd(f) and reconstruct the remaining homogeneous

components of f .

4.2 Exponential Degree and Exponential

Sparsity

It is known that s-sparse nonzero polynomials in FhXi cannot vanish on O(log s)

dimensional matrix algebras [AJMR17]. We obtain a similar result for F[�]: nonzero

functions in F[�] of sparsity s do not vanish on O(log s) dimensional matrices. It

yields a randomized polynomial-time identity test if the black-box contains a free

group algebra function f of exponential degree and exponential sparsity. We show

the following.

73

Theorem 15. Let F be any field of characteristic zero. Then, a nonzero free group

algebra function f 2 F[�] of sparsity s is not an identity for the matrix algebra

Matk(F) for k � c log s for some small constant c.

Remark 4. Similarly, we have stated our results for fields of characteristic zero

only for the simplicity of the proof. With suitable modifications, this result also

extends to fields of positive characteristics (discussed in Section 4.3).

The following corollary is immediate.

Corollary 4. Given a degree-D free group algebra function f 2 F[�] of sparsity s as

black box, we can check whether f is identically zero or not in randomized

poly(n, logD, log s) time.

It is known [AJMR17] that a nonzero noncommutative polynomial of sparsity s

cannot be an identity for O(log s) dimensional matrix algebras. In this section, we

show a similar result for free group algebra functions. In particular, we prove that

the dimension of the matrix algebra for which a nonzero free group algebra function

f does not vanish is logarithmic in the sparsity of f . It yields a randomized

poly(logD, log s, n) time identity testing algorithm when the black-box contains a

free group algebra function of degree D and sparsity s.

We first recall the notion of isolating index set from [AJMR17].

Definition 13. Let M ✓ {X,X�1
}
D be a subset of reduced words of degree D. An

index set I ✓ [D] is an isolating index set for M if there is a word m 2M such

that for each m0
2M\ {m} there is an index i 2 I for which m[i] 6= m0[i]. I.e. no

other word in M agrees with m on all positions in the index set I. We say m is an

isolating word.

In the following lemma, we show that M has an isolating index set of size log |M|.

The proof is identical to [AJMR17]. Nevertheless, we give simple details for

completeness as we deal with both variables and their inverses.

74

Lemma 8. [AJMR17] Let M ✓ {X,X�1
}
D be reduced degree-D words. Then M

has an isolating index set of size k which is bounded by log |M|.

Proof. The words m 2M are indexed, where m[i] denotes the variable (or the

inverse of a variable) in the ith position of m. Let i1 D be the first index such

that not all words agree on the ith1 position. Let

S+
j

= {m : m[i1] = xj}

S�
j

= {m : m[i1] = x�1
j
}.

For some j, |S+
j
| or |S�

j
| is of size at most |M|/2. Let Sb

j
denote that subset,

b 2 {+,�}. We replace M by Sb

j
and repeat the same argument for at most

log |M| steps. Clearly, by this process, we identify a set of indices I = {i1, . . . , i0k},

k0
 log |M| such that the set shrinks to a singleton set {m}. Clearly, I is an

isolating index set as witnessed by the isolating word m.

Proof of Theorem 15

Proof. Let k = 4(k0 + 1) where k0 is the size of the isolating set I. As in Section 4.1,

we apply �-encoding on input free group algebra function f . The transition matrices

for each xi is denoted by Mi. Let I = {i1, . . . , ik0} be an isolating set such that

i1 < . . . < ik0 . Intuitively, the NFA does one of two operations on each symbol (a

variable or its inverse) of the input expression: a skip or an encode similar to the

proof of Lemma 7. However, the crucial di↵erence is that it encodes only the

positions belonging to the isolating set. In a Skip stage, the NFA deals with

positions that are not part of the (guessed) isolating index set. In this stage, the

NFA substitutes the x0 variables by suitable scalars and xi variables by block

variables {⇠1, . . . ⇠k0+1}. The NFA nondeterministically decides whether the skip

75

stage is over and it enters the encode stage for a guessed index of the isolating set.

It then substitutes xi and x�1
i

variables by yi,j and zi,j respectively. Fig. 4.4

summarizes the action of the NFA.

Start Skip 1 Enc 1 Skip 2 Enc 2 Skip k0 Enc k0 Final

Figure 4.4: The transition diagram of the automaton

We define k ⇥ k matrix M0 as a block diagonal matrix of k0 + 1 many copies of a

4⇥ 4 matrix M 0
0 where M 0

0 = I4 + i(e12 + e34 + e32 + e14).

M 0
0 =

2

66666664

1 1 0 1

0 1 0 0

0 1 1 1

0 0 0 1

3

77777775

, M0 =

2

66666666664

M 0
0 0 0 . . . 0

0 M 0
0 0 . . . 0

0 0 M 0
0 . . . 0

...
...

...
. . .

...

0 0 0 . . . M 0
0

3

77777777775

,

M 0�1
0 =

2

66666664

1 �1 0 �1

0 1 0 0

0 �1 1 �1

0 0 0 1

3

77777775

, M�1
0 =

2

66666666664

M 0�1
i

0 0 . . . 0

0 M 0�1
i

0 . . . 0

0 0 M 0�1
i

. . . 0

...
...

...
. . .

...

0 0 0 . . . M 0�1
i

3

77777777775

.

Notice that

76

M 0b1i+b2j

0 =

2

66666664

1 (b1i + b2j) 0 (b1i + b2j)

0 1 0 0

0 (b1i + b2j) 1 (b1i + b2j)

0 0 0 1

3

77777775

.

We now define the k ⇥ k transition matrix Mi for each i 2 [n] as a block diagonal

matrix,

M 0
i,j

=

2

64
0 yi,j

1
zi,j

0

3

75, M 0
⇠i

=

2

64
0 ⇠i

1
⇠i

0

3

75,

Mi =

2

666666666666666664

1 0 0 0 . . . 0 0

0 M⇠1 0 0 . . . 0 0

0 0 M 0
i,1 0 . . . 0 0

0 0 0 M⇠2 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . M⇠k0+1
0

0 0 0 0 . . . 0 1

3

777777777777777775

.

These matrices can be seen as the transitions of a suitable NFA. We sketch the

transitions of this NFA.

q4j q4j+1

xi, x
�1
i
! yij, zij

xi, x
�1
i
! 1/zij, 1/yij

Figure 4.5: The transition diagram of the automaton at Encode stage

We refer to an NFA transition qi ! qj as a forward edge if i < j and a backward

edge if i > j. We classify the backward edges in three categories based on the

substitution on the edge-label. We say, a backward edge is of type A if a variable is

substituted by a scalar value; a backward edge is of type B if a variable is

77

q4j�3 q4j�2 q4j�1 q4j
x0 ! 1

x�1
0 ! �1

x0 ! 1, x�1
0 ! �1

xi ! ⇠j

xi !
1
⇠j

x0 ! 1

x�1
0 ! �1

x0 ! 1

x�1
0 ! �1

x0 ! 1

x0 ! 1 x0 ! 1

x0 ! 1

Figure 4.6: The transition diagram of the automaton at Skip stage

substituted by 1
⇠j

for some j; a backward edge is of type C if a variable is

substituted by 1
yi,j

or 1
zi,j

for some i, j.

Define f̂ in F(Y, Z,
¯
⇠) to be rational function we obtain at the (1, k)th1 entry by

evaluating the expression f(M̃1, . . . , M̃n) where for each i, M̃i = M i

0MiM i

0. Let

I = {i1, . . . , ik0} be the isolating set such that for each j 2 [k0],

ij =
jX

j0=1

`j0 + (j � 1).

Notice that, the isolating word m of highest degree D will be of the following form,

m = W1x
bi1
i1
W2x

bi2
i2

· · ·W 0
k
x
bik0
ik0

Wk0+1,

where each subword Wj = xb1
j1
xb2
j2
· · · x

b`j

j`j
is of length `j � 0 and `k0+1 = D � ik0 ,

where some of the Wj could be the empty word as well.

We now define, m̂ as a monomial over {Y, Z, ⇠} of degree D,

m̂ =
k
0+1Y

j=1

⇠
`j

j
·

k
0Y

j=1

(I[bij=1]yijj + I[bij=�1]zijj).

1
Recall that k = 4(k0 + 1) where k0 is the size of an isolating set.

78

Now the proof follows from the following claim.

Claim 3.

[m̂]f̂ 6= 0 if and only if [m]f 6= 0.

Proof. Let us first show that m̂ is generated by substituting m in the NFA.

Consider a walk of the NFA on an input word m that reaches state k using only type

A backward edges. In that case, m is substituted by ↵ · m̂ where ↵ is some nonzero

constant obtained as a product of [m]f with the scalars obtained as substitutions

from the edges involving the x0 variable in the Skip stages. Indeed, as we can see

from the entries of product matrices M 0b1i
0 ·M 0b2j

0 , where b1, b2 2 {�1, 1}, the scalar

↵ is a product of [m]f with terms of the form b1i + b2j, for i 6= j, each of which is

nonzero for any reduced word.

It su�ces to show that for any word m0
6= m, where m0 has degree D, no walks of

the NFA accepting m0 generate m̂ after substitution. For a computation path J , the

monomial mJ in f̂ has two parts, let us call it skipJ and encodeJ where skipJ is a

monomial over {⇠1, . . . , ⇠k0+1} and encodeJ is a monomial over {yij, zij}i2[n],j2[k0]. If

the computation path J (which is di↵erent from the computation path described

above for m̂) uses only type A backward edges, then necessarily mJ 6= m̂ from the

definition of isolating index set. This argument is analogous to the argument given

in [AJMR17].

Now consider a walk J which involves backward edges of other types. Let us first

consider those walks that take backward edges only of type A and type B. Such a

walk still produces a monomial over {yij, zij}i2[n],j2[k0] and {⇠i}1ik0+1 because

division only by ⇠i variables occur in the resulting expression. Since m̂ is of highest

degree, the total degree of these monomials is strictly lesser than degree of m̂. For

those walks that take at least one backward edge of type C, a rational expression in

{yij, zij}i2[n],j2[k0] and {⇠i}1ik0+1 is produced (as there is division by yij or zij

79

variables). As the sum of the degree of the numerator and degree of the numerator

is bounded by the total degree, the degree of the numerator is smaller than degree of

m̂.

Thus the (1, k)th entry of the output matrix is of the form
P

N1

i=1 cimi +
P

N2

j=1 rj

where {m1, . . . ,mN1} are monomials arising from di↵erent walks (w.l.o.g. assume

that m1 = m̂) and {r1, . . . , rN2} are the rational expressions from the other walks

(due to the backward edges of type C). Note that, denominator in each rj is a

monomial over Y, Z of degree at most D. Let L =
Q

n

i=1

Q
k
0

j=1 y
D

i,j
· zD

i,j
. Now, we

have,
N1X

i=1

cimi +
N2X

j=1

rj =
1

L
·

N1X

i=1

cimiL +
N2X

j=1

pj

!
.

Since m̂L 6= miL for any i 2 {2, . . . , N1} and degree of each pj < degree of m̂L for

any j 2 {1, . . . , N2}, the numerator of the final expression is a nonzero polynomial

in F[Y, Z,
¯
⇠].

The above proof shows that the matrix f(N1M1N1, . . . , NnMnNn) is nonzero with

rational entries in F[Y, Z,
¯
⇠]. Each entry is a linear combination of terms of the form

m1/m2, where m1 and m2 are monomials in Y [Z [{⇠1, . . . , ⇠k0+1} of degree

bounded by D. Note that, the matrix dimension is k = c log s for some constant c.

This completes the proof of Theorem 15.

To get an identity testing algorithm, we can do random substitutions.The matrix

dimension is log s and the overall running time of the algorithm is

poly(n, log s, logD). This also proves Corollary 4.

Remark 5. For algorithmic purposes, we note that Theorem 13 is sometimes

preferable to Theorem 15. For instance, the encoding used in Theorem 15 does not

preserve the sparsity of the polynomial as required in the sparse reconstruction result

(see Theorem 14).

80

4.3 Over Small Finite Fields

Let F be any finite field. We will ensure that the scalar used in the matrix

construction and the scalar produced by the automaton (see Equation 4.1) described

in Section 4.1 for each word m in the free group algebra is nonzero in F. We first

note that one can modify the Definition 14 of �-encoding in the following way.

Introduce a new variable x̃i corresponding to xi for each i 2 [n]. Let �0 be the free

group generated by {x1, x̃1, . . . , xn, x̃n}.

Definition 14. The encoding � : F[�]! F[�0] is defined by substituting for each xi

the word x̃ixix̃i (therefore, x
�1
i

by x̃i
�1x�1

i
x̃i

�1).

For any two free group algebra functions f1, f2, f1 6= f2 if and only if �(f1) 6= �(f2).

The proof follows from Observation 2.

Now following the proof of Lemma 7, we can modify the matrix substitution in the

“skip step” as follows,

x̃i M̃i =

2

666666666666664

1 0 0 . . . 0 0

0 M̃ 0
i

0 . . . 0 0

0 0 M̃ 0
i

. . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . M̃ 0
i

0

0 0 0 . . . 0 1

3

777777777777775

where, M̃ 0
i
=

2

64
1 i

0 1

3

75 .

Observe that, the basic building block of each M̃i is a simple 2⇥ 2 matrix with i in

the top-right corner. It ensures that for each pair i, j 2 [n], each term (bii+ bjj) 6= 0

where bi, bj 2 {�1,+1}. Indeed, for some fixed ↵ 2 F, one can redefine each 2⇥ 2

block M̃ 0
i

with ↵i in the top-right corner instead of i. It also ensures that for each

pair i, j 2 [n], each term (bi↵i + bj↵j) 6= 0 if ↵i
± ↵j

6= 0 for any i, j 2 [n]. Observe

that, ↵i
� ↵j

6= 0 if each ↵i is distinct. To ensure ↵i + ↵j
6= 0, we choose ↵ such that

81

↵2(i�j)
6= 1 for any i, j 2 [n]. Therefore, the goal is to find an element ↵ 2 F of order

at least 2n. To make it work over any small finite field F of characteristic p also, we

can construct an extension field F0 of F such that |F0
| � 2n.

Thus, for each word m, the scalar produced by the automata is nonzero.

Furthermore, the test set of [KS01] works for all fields. Hence Theorem 14 holds for

all finite fields too. To obtain Corollaries 3 and 4, we will do random substitutions

from a suitable small degree extension field and use Polynomial Identity

Lemma [Sch80, Zip79, DL78]. In summary, our algorithms in this chapter can be

adapted to work for all finite fields also.

Conclusion

In this chapter, we have studied the identity testing problem for free group algebra

expressions and obtained algorithmic results similar to the known results for

noncommutative polynomials. Theorem 13 shows, analogous to the

Amitsur-Levitzki theorem [AL50], a degree upper bound for nonzero free group

algebra expressions that can vanish on d⇥ d matrices. However, unlike the

Amitsur-Levitzki theorem, we do not know whether or not this upper bound is tight.

On the lower bound side, it will be interesting to obtain a nonzero free group

algebra expression of degree d that is an identity for d⇥ d matrices.

82

Chapter 5

Fast Exact Algorithms using

Hadamard Product of Polynomials

In the previous two chapters, we have studied the image of noncommutative

polynomials and obtained new algorithmic results in noncommutative algebraic

complexity. In this chapter, we obtain new algorithmic results using techniques from

noncommutative algebraic complexity. We study two algebraic problems, namely

multilinear monomial detection, and multilinear monomial counting, and show that

these problems are special instances of computing commutative Hadamard products

which we reduce to noncommutative Hadamard product computation of two suitable

noncommutative polynomials. Using this connection, we obtain faster algorithms for

those algebraic problems.

It turns out that we know only a few examples of designing e�cient algorithms for

combinatorial problems using techniques from noncommutative algebraic complexity.

One interesting aspect of noncommutative computation is that the noncommutative

determinant can be used to define an unbiased estimator for the commutative

permanent polynomial as initially discovered by Godsil and Gutman [GG81]. In this

chapter, we explore one such application of using noncommutative computation.

83

Introducing Multilinear Monomial Detection and Multilinear Monomial

Counting: Let F be any field and X = {x1, x2, . . . , xn} be a set of commuting

variables. Koutis and Williams [Kou08, Wil09, KW16] introduced and studied two

natural algorithmic problems in arithmetic circuits:

1. Given as input an arithmetic circuit C of poly(n) size computing a polynomial

f 2 F[X], the k-multilinear monomial counting problem denoted (k,n)-MLC is

to compute the sum of the coe�cients of all degree-k multilinear monomials in

the polynomial f . In this formulation, the problem is a generalization of

counting the degree-k multilinear monomials.

2. The k-multilinear monomial detection problem denoted k -MMD, is to test if

there is a degree-k multilinear monomial in the polynomial f with a non-zero

coe�cient.

Observe that (k,n)-MLC and k -MMD can be solved in time O⇤(nk) essentially by

extracting out the degree k part in the circuit C computing f , and enumerating all

degree-k monomials with their coe�cients in f .

The above two problems have attracted significant attention in recent times. In

particular, Koutis [Kou08], Williams [Wil09], and Koutis-Williams [KW16] have

studied (k,n)-MLC and k -MMD problems from the viewpoint of parameterized and

exact algorithms. These problems are natural generalizations of the well-studied

k-path detection and counting problems in a given graph [Kou08]. Moreover, some

other combinatorial problems like k -Tree, m-Dimensional k -Matching [KW16],

well-studied in the parameterized complexity, reduces to these problems. In fact, the

first randomized FPT algorithms for the decision version of these combinatorial

problems were obtained from an O⇤(2k) algorithm for k -MMD for monotone circuits

using an algebraic technique based on group algebras [Kou08, Wil09, KW16].

Recently, Brand et al. [BDH18] have given the first randomized FPT algorithm for

84

k -MMD for general circuits that runs in time O⇤(4.32k). Their method is based on

exterior algebra and color coding [AYZ95].

In general, the exact counting versions of the k-path problem and many related

problems are #W[1]-hard with respect to parameter k. For these counting problems,

improvements to the trivial O⇤(nk) time exhaustive search algorithm is known only

in some cases (like counting k-paths) [BHKK09]. In this connection, Koutis and

Williams [KW16] ask if there is an algorithm for (k,n)-MLC that improves upon the

naive O⇤(nk) time algorithm. It would yield faster algorithms for several exact

counting problems. Indeed, Koutis and Williams in [KW16] give an algorithm of

running time O⇤(nk/2) to compute the parity of the sum of coe�cients of degree-k

multilinear monomials.

In this chapter, we make progress on the Koutis and Williams problem, mentioned

above, by giving an O⇤(nk/2) algorithm for the (k,n)-MLC problem. Broadly, we

develop a new approach to the k -MMD, (k,n)-MLC problems, and related problems.

Our algorithms are based on computing the Hadamard product of polynomials. See

Definition 8 in Chapter 2 for more details.

Recall from Chapter 2 that the Hadamard product of polynomials has turned out to

be a useful tool in noncommutative computation [AJS09, AS18]. A contribution of

this chapter is to develop a new method for computing the Hadamard product in

the commutative setting (as defined above), which turns out to be useful for

designing e�cient FPT and exact algorithms.

We now give some formal basic definitions and set up the notation for this chapter.

Some basic definitions: We begin with the definition of the Hadamard product.

Notice that, one can define the Hadamard product of two commutative polynomials

also (i.e. a commutative analog of Definition 8).

85

Definition 15. The (commutative) Hadamard product of polynomials f and g in

F[X] is defined as

f � g =
X

m

([m]f · [m]g) ·m,

where m runs over all monomials nonzero in f or g, and [m]f denotes the

coe�cient of the monomial m in f .

A polynomial f 2 F[X] is said to be multilinear if for every nonzero monomial

m = xe1
1 xe2

2 · · · xen
n

of f we have ei 1.

An important family of polynomials for this chapter are the elementary symmetric

polynomials which are defined over any field F as follows:

The elementary symmetric polynomial Sn,k 2 F[X] of degree k over the n variables

X = {x1, x2, . . . , xn} is defined as

Sn,k =
X

S⇢[n]:|S|=k

Y

i2S

xi.

By definition, Sn,k is the sum of all the degree-k multilinear monomials.

Polynomial-time as the notion of feasible computation, and the accompanying

hardness theory of NP-completeness, is refined in the world of parameterized

computation where the input instance is augmented with a fixed parameter k.

Feasible parameterized computation means that the running time is of the form

t(k) · nO(1) for inputs of size n and fixed-parameter k, where t(·) can be an arbitrary

function that depends solely on parameter k. The parameterized analogue of P is

denoted FPT. It is the class of fixed parameter time solvable problems, and

algorithms with such running time are called FPT algorithms. The analogue of NP

is denoted W[1], but the hardness theory has more technical details that can be

found in the textbook by Downey and Fellows [DF13].

The notation O⇤(T (n, k)) suppresses polynomial factors. Thus, a function in

86

O⇤(T (n, k)) is of the form O(T (n, k) · poly(n, k)).

The following is a convenient notation for ascending sums of binomial coe�cients:

✓
n

i

◆
,

iX

j=0

✓
n

j

◆
.

From Commutative to Noncommutative

A crucial element of our results on Hadamard product computation is going from

the commutative to the noncommutative setting.

Let X = {x1, x2, . . . , xn} be n commuting variables and Y = {y1, y2, . . . , yn} be n

corresponding noncommuting variables.1 Suppose f 2 F[X] is a homogeneous

degree-k polynomial represented by an arithmetic circuit C. We define its

noncommutative version C which computes a noncommutative homogeneous

degree-k polynomial denoted f̂ 2 FhY i as follows.

Definition 16. Let C be a commutative arithmetic homogeneous circuit C

computing a homogeneous degree-k polynomial f 2 F[X]. The noncommutative

version of C, C is the noncommutative circuit obtained from C by fixing an ordering

of the inputs to each product gate in C and replacing xi by the noncommuting

variable yi, 1 i n. The polynomial computed by C is denoted

f̂ 2 Fhy1, y2, . . . , yni.

We similarly define the noncommutative version B of an ABP B.

The arithmetic circuit complexity of a polynomial f is the size s(f) of the smallest

circuit representing f . The ABP complexity of f is the size B(f) of the smallest

ABP representing f . This notation is used for both commutative and

noncommutative polynomials.

Remark 6. The definition of the noncommutative C is entirely dependent on the

ordering of the inputs to each product gate of C. This could, for instance, be by

1
Throughout, we use yi to denote noncommuting variables associated with the xi.

87

increasing the order of the gate names of the circuit C. Since C is a homogeneous

circuit, we note that the circuit C is also a homogeneous circuit.

We introduce the following notation:

Xk , {all degree k monomials over X}.

Y k , {all degree k monomials over Y }.

For mapping noncommutative polynomials back to commutative polynomials, we

use the substitution map:

⌫ : Y ! X defined as ⌫(xi) = yi, 1 i n.

This map extends to ⌫ : Y k
! Xk and, by linearity, gives a ring homomorphism (it

is easily checked that ⌫(f + g) = ⌫(f) + ⌫(g) and ⌫(fg) = ⌫(f)⌫(g)):

⌫ : FhY i ! F[X],

and its kernel, ker(⌫), is all those noncommutative polynomials over Y that vanish if

the variables are allowed to commute.

Each monomial m 2 Xk can appear as a di↵erent noncommutative monomial

m̂ 2 ⌫�1(m) in f̂ 2 FhY i. We will use the notation m̂ ! m to denote that

m̂ 2 ⌫�1(m). Observe that

[m]f =
X

m̂2⌫�1(m)

[m̂]f̂ =
X

m̂:m̂!m

[m̂]f̂.

The noncommutative circuit C is not directly useful for computing Hadamard

product. However, the following symmetrization helps. We first explain how

permutations � 2 Sk act on the set Y k of degree-k monomials. The action extends,

88

by linearity, to all homogeneous degree-k polynomials.

For each monomial m̂ = yi1yi2 · · · yik , the permutation � 2 Sk maps m̂ to the

monomial m̂� defined as

m̂� = yi�(1)
yi�(2)

· · · yi�(k)
.

By linearity, the polynomial f̂ is mapped by � to the polynomial

f̂� =
X

m̂2Y k

[m̂]f̂ · m̂�.

Definition 17 (Symmetrized polynomial). The symmetrized polynomial f ⇤
2 FhY i

obtained from f 2 F[X] is defined as the degree-k homogeneous polynomial

f ⇤ =
X

�2Sk

f̂�.

5.1 Hadamard Product Framework

Given two arithmetic circuits C1 and C2 computing polynomials f1 and f2, it is in

general unlikely that f1 � f2 can be computed by an arithmetic circuit C of size

poly(|C1|, |C2|). This can be observed from the fact that for the symbolic matrix

X = (xi,j)1i,jn, the Hadamard product of the determinant polynomial Det(X)

with itself is the permanent polynomial Per(X) which does not have polynomial-size

circuit assuming Valiant’s VP 6= VNP hypothesis [Val79]. However, it is well known

that Det(X) can be computed by a polynomial-size ABP [MV97].

Nevertheless, we develop a method for computing the scaled Hadamard product of

commutative polynomials in some special cases.

Definition 18. The scaled Hadamard product of polynomials f, g 2 F[X] is defined

89

as

f �
s g =

X

m

(m! · [m]f · [m]g) ·m,

where for monomial m = xe1
i1
xe2
i2
. . . xer

ir
we define m! = e1! · e2! · · · er!.

Computing the scaled Hadamard product is key to our algorithmic results for

k -MMD and (k,n)-MLC. Broadly, it works as follows: we transform polynomials f

and g to suitable noncommutative polynomials. We compute their

(noncommutative) Hadamard product (see the discussion in

p.29-30, Chapter 2) [AJS09, AS18], and then recover the scaled commutative

Hadamard product f �
s g (or evaluate it at a desired point

¯
a 2 Fn).

Suppose f 2 F[x1, x2, . . . , xn] is a homogeneous degree-k polynomial given by a

circuit C. We have its noncommutative version C which computes the

noncommutative homogeneous degree-k polynomial f̂ 2 Fhy1, y2, . . . , yni (see

Definition 16).

Recall that Xk denotes the set of all degree-k monomials over X, Y k denote all

degree-k noncommutative monomials over Y , and we have [m]f =
P

m̂!m
[m̂]f̂ ,

where m 2 Xk and m̂ 2 Y k. We will use the symmetrized polynomial (see

Definition 17), f ⇤ =
P

�2Sk
f̂�, to compute the scaled Hadamard product f �

s g.

Lemma 9. For a homogeneous degree-k commutative polynomial f 2 F[X] given by

circuit C, and its noncommutative version C computing polynomial f̂ 2 FhY i,

consider the symmetrized noncommutative polynomial f ⇤ =
P

�2Sk
f̂�. Then for

each monomial m 2 Xk and each word m0
2 Y k such that m0

! m, we have:

[m0]f ⇤ = m! · [m]f.

Proof. Let f =
P

m
[m]f ·m and f̂ =

P
m̂

[m̂]f̂ · m̂. As already observed,

[m]f =
P

m̂!m
[m̂]f̂ . Now, we write f ⇤ =

P
m0 [m0]f ⇤

·m0. The group Sk acts on Y k

by permuting the positions. Suppose m = xe1
i1
· · · xeq

iq
is a type

¯
e = (e1, . . . , eq)

90

monomial over Xk and m0
! m. Then, by the well-known Orbit-Stabilizer Theorem

the orbit Om0 of m0 under the action of Sk has size k!
m! . It follows that

[m0]f ⇤ =
X

m̂2Om0

m! · [m̂]f̂ = m!
X

m̂!m

[m̂]f̂ = m! · [m]f.

It is important to note that for some m̂ 2 Y k such that m̂ ! m, even if [m̂]f̂ = 0

then also [m̂]f ⇤ = m! · [m]f .

Next, we apply Lemma 9 to compute scaled Hadamard product in the commutative

setting via noncommutative Hadamard product.

Remark 7. We note that given a commutative circuit C computing f , the

noncommutative polynomial f̂ computed by C depends on the circuit structure of C.

In other words, there can be many f̂ corresponding to f . However, Lemma 9 shows

that f ⇤ depends only on the polynomial f .

Lemma 10. Let g 2 F[X] be a homogeneous degree-k polynomial and C be some

arithmetic circuit for g. For any homogeneous degree-k polynomial f 2 F[X] and

any point
¯
a 2 Fn

(f �
s g)(

¯
a) = (f ⇤

� ĝ)(
¯
a),

where the noncommutative polynomial ĝ is defined by the given circuit C.

Proof. We write f =
P

m
[m]f ·m and g =

P
m0 [m0]g ·m0. By definition, we have

f �
s g =

P
m
m! · [m]f · [m]g ·m.

The polynomial computed by C is ĝ(Y) =
P

m2Xk

P
m̂!m

[m̂]ĝ · m̂. By Lemma 9, the

noncommutative polynomial f ⇤(Y) =
P

m2Xk

P
m̂!m

m! · [m]f · m̂. Therefore,

(f ⇤
� ĝ)(Y) =

X

m2Xk

X

m̂!m

m! · [m]f · [m̂]ĝ · m̂ =
X

m2Xk

m! · [m]f ·

X

m̂!m

[m̂]ĝ

!
· m̂.

91

Consequently, for any point
¯
a 2 Fn we have

(f ⇤
� ĝ)(

¯
a) =

X

m2Xk

m! · [m]f ·

X

m̂!m

[m̂]ĝ

!
· m̂(

¯
a).

Since [m]g =
P

m̂!m
[m̂]ĝ, we have

(f ⇤
� ĝ)(

¯
a) =

X

m2Xk

m! · [m]f ·m(
¯
a) · [m]g = (f �

s g)(
¯
a).

We note an immediate corollary of the above.

Corollary 5. Let f1, f2 be homogeneous degree-k polynomials in F[X]. Given a

noncommutative circuit C computing the polynomial f̂1 � f ⇤
2 2 FhY i, one can obtain

a commutative circuit C̃ for f1 �s f2 2 F[X] by replacing the noncommutative

variables yi in C by the commutative variables xi.

Proof. Let f1 =
P

m
[m]f1 ·m1. So, f̂1 =

P
m̂

[m̂]f̂ · m̂ and [m]f =
P

m̂!m
[m̂]f̂ .

Then, f̂1 � f ⇤
2 (Y) =

P
m̂

[m̂]f̂1 · [m̂]f ⇤
2 · m̂ =

P
m̂

[m̂]f̂1 ·m![m]f2 · m̂ where m̂ ! m.

Now replacing the noncommutative variables by commutative variables, we obtain

f̂1 � f
⇤
2 (X) =

X

m

m! ·

X

m̂!m

[m̂]f̂1

!
· [m]f2 ·m

Since, [m]f =
P

m̂!m
[m̂]f̂ , we further simplify and get f̂1 � f ⇤

2 (X) = f1 �s f2(X).

Remark 8. A key conceptual tool in [Pra18] is the apolar inner product for

homogeneous degree-k polynomials f and g in F[X], which is defined as

hf, gi = f(@x1 , . . . , @xn) � g(x1, . . . , xn).

We note that in the Hadamard product framework, we can express the apolar inner

92

product of f and g as f �
s g evaluated at the all-ones vector

¯
1 2 Fn. In Section 5.5

we present more details.

5.2 The Sum of Coe�cients of Multilinear

Monomials

The main result of this section is the following.

Theorem 16. The (k,n)-MLC problem for an input polynomial in F[x1, x2, . . . , xn],

given as input by an algebraic branching program of size s, has a deterministic

O⇤(
�

n

#k/2

�
)-time algorithm. When f is given as input by an arithmetic circuit C of

size s, has a deterministic O⇤(
�

n

#k/2

�
· sc·log k)-time algorithm where c is a constant.

For the above theorem, the underlying field F could be any field whose elements can

be e�ciently represented, with e�ciently computable field operations. We note that

the above run time beats the naive O⇤(nk) bound, answering the question asked by

Koutis and Williams [KW16]. The notation
�
n

#i

�
stands for

P
i

j=0

�
n

j

�
.

The main idea is to apply the symmetrization trick to reduce the (k,n)-MLC

problem to the evaluation of the rectangular permanent over a suitable matrix ring.

Then we use a result of [BHKK10] to solve the instance of the rectangular

permanent evaluation problem.

Before we present the results we recall the definition of ABPs (Definition 2) and the

following di↵erent but equivalent formulation of ABPs:

A homogeneous ABP of width w computing a degree-k polynomial over X can be

thought of as the (1, w)th entry of the product of w ⇥ w matrices M1 · · ·Mk where

entries of each Mi are homogeneous linear forms over X. By [xj]Mi, we denote the

w ⇥ w matrix over F, such that (p, q)th entry of the

93

matrix,([xj]Mi)(p, q) = [xj](Mi(p, q)), the coe�cient of xj in the linear form of the

(p, q)th entry of Mi.

Permanent of Rectangular Matrices

We now define the permanent of a rectangular matrix. The permanent of a

rectangular k ⇥ n matrix A = (aij), k n, with entries over a ring R is defined as

rPer(A) =
X

�2Ik,n

kY

i=1

ai,�(i),

where Ik,n is the set of all injections from [k] to [n]. We define the noncommutative

polynomial S⇤
n,k

as

S⇤
n,k

(y1, y2, . . . , yn) =
X

T✓[n]:|T |=k

X

�2Sk

Y

i2T

y�(i),

which is the symmetrized version of the elementary symmetric polynomial Sn,k as

defined in Lemma 9. Given a set of t⇥ t matrices M1, . . . ,Mn over some field F

define the rectangular (block) matrix A = (ai,j)i2[k],j2[n] such that ai,j = Mj. Thus,

A is a k ⇥ n matrix with entries from the ring of t⇥ t matrices over the field F. The

following observation is crucial.

Observation 3. S⇤
n,k

(M1, . . . ,Mn) = rPer(A).

Proof. To see this, observe that ,

rPer(A) =
X

T✓[n]:|T |=k

Per(AT) =
X

T✓[n]:|T |=k

X

�2Sk

Y

i2T

M�(i).

Here AT is the minor of A such that the columns are indexed by the set T .

In the sequel, we will apply a result from [BHKK10], showing that over any ring R,

94

the permanent of a rectangular k ⇥ n matrix can be evaluated with O⇤(
�

n

#k/2

�
) ring

operations. In particular, if R is the matrix ring Mats(F), the algorithm runs in

time O(k
�

n

#k/2

�
poly(n, s)). We now present the proof of Theorem 16.

Proof. We first prove a special case of the theorem when the polynomial f is given

by a homogeneous degree-k ABP B of width w. Notice that we can compute the

sum of the coe�cients of the degree-k multilinear terms in f by evaluating

(f � Sn,k)(¯
1). Now to compute the Hadamard product e�ciently, we will transfer the

problem to the noncommutative domain. Let B define the noncommutative version

of the commutative ABP B for the polynomial f . By Lemma 10, it su�ces to

compute (B � S⇤
n,k

)(
¯
1). Now, the following lemma reduces this computation to

evaluating S⇤
n,k

over a suitable matrix ring. We recall the following result from

[AS18] (see, Chapter 2 for more details).

Lemma 11. (Theorem 2 of [AS10]) Let f be a homogeneous degree-k

noncommutative polynomial in FhY i and B be an ABP of width w computing a

homogeneous degree-k polynomial g = (M1 · · ·Mk)(1, w) in FhY i.

Then (f � g)(
¯
1) = (f(AB

1 , . . . , A
B

n
))(1, (k + 1)w) where for each i 2 [n], AB

i
is the

following (k + 1)w ⇥ (k + 1)w block superdiagonal matrix,

AB

i
=

2

66666666664

0 [yi]M1 0 . . . 0

0 0 [yi]M2 . . . 0

...
...

.
...

0 0 0 . . . [yi]Mk

0 0 0 . . . 0

3

77777777775

.

Now, we construct a k ⇥ n rectangular matrix A = (ai,j)i2[k],j2[n] from the ABP B

(obtained from the given ABP B) by setting ai,j = AB
j

as defined. Using

95

Observation 3, we now have,

rPer(A)(1, (k + 1)w) = S⇤
n,k

(AB
1 , . . . , A

B
n
)(1, (k + 1)w).

Now by Lemma 10 and Lemma 11, we conclude that,

S⇤
n,k

(AB
1 , . . . , A

B
n
)(1, (k + 1)w). = (S⇤

n,k
�B)(

¯
1) = (Sn,k �

s B)(
¯
1).

Hence applying the algorithm of Björklund et al. for evaluating the rectangular

permanent over noncommutative ring [BHKK10], we compute the sum of the

coe�cients deterministically in time O(k
�

n

#k/2

�
poly(n, k, w)).

Now, we prove the general case. We apply a standard transformation from circuits

to ABPs [VSBR83, SY10] and reduce the problem to the ABP case. More precisely,

given an arithmetic circuit of size s computing a polynomial f of degree k, f can

also be computed by a homogeneous ABP of size sO(log k). In particular, if f is given

by an arithmetic circuit of size s, we first get a circuit of poly(k, s) size for degree-k

part of f using a standard method of homogenization [SY10, Theorem 2.2]. Then,

we convert the homogeneous circuit to a homogeneous ABP of size sO(log k). The

width w of the new ABP is also bounded by sO(log k). Next, we apply the first part

of the proof to the newly constructed ABP. Notice that the entire computation can

be done in deterministic O(k
�

n

#k/2

�
poly(n, k, w)) time which is O⇤(

�
n

#k/2

�
· sc·log k) for

some constant c.

5.2.1 Some Applications

We show some applications of Theorem 16 and the technique developed there. The

first two are algorithmic applications and the last is a hardness result.

Applying Theorem 16, we improve the counting complexity of two combinatorial

96

problems studied in [KW16]. To the best of our knowledge, nothing better than the

brute-force exhaustive search algorithms were known for the counting version of

these problems. We start with the k -Tree problem: Let T be a tree with k vertices

and G be an n-vertex graph. A homomorphic embedding of T in G is defined by an

injective map ' : V (T) ! V (G) such that for all u, v 2 V (T)

uv 2 E(T) =) '(u)'(v) 2 E(G).

A copy of T in G is '(T) for some homomorphic embedding ' of T in G. Let eT,G

denote the number of homomorphic embeddings of T in G and cT,G denote the

number of copies of T in G. Let Aut(T) denote the automorphism group of T . For

two such homomorphic embeddings '1 and '2 we have '1(T) = '2(T) if and only if

'�1
1 '2 2 Aut(T). Hence,

(5.1) cT,G =
eT,G

|Aut(T)|
.

The exact counting version of k -Tree is the problem of counting the number of

copies of T in G for an input pair (T,G). Clearly, there is a trivial O⇤(nk)

exhaustive search algorithm for the problem. We apply Theorem 16 to obtain an

essentially quadratic speed-up.

Corollary 6. The exact counting k -Tree problem of counting the number of copies

of a given k-vertex tree in a given n-vertex graph can be computed in deterministic

O⇤(
�

n

#k/2

�
) time.

Proof. By Equation 5.1 it su�ces to count the number of homomorphic embeddings

of T in G, as counting the number of automorphisms |Aut(T)| of T can be done in

poly(k) time.

97

To this end, we will use a modification of the construction defined in [KW16,

Theorem 2.2]. Let the nodes of T be {1, 2, . . . , k} and the nodes of G be

{1, 2, . . . , n}. W.l.o.g., we can consider T to be a tree rooted at 1. As a consequence,

every node i 2 [k] of T uniquely defines a subtree Ti rooted at i. Let

X = {x1, x2, . . . , xn} be the set of n commuting variables corresponding to the n

vertices of G. We inductively define a polynomial Cij in F[X] as follows:

• If i is a leaf node of the tree T then Cij = xj.

• Otherwise, let i1, i2, . . . , i` be the children of i in T . Inductively, we can

assume that the polynomials Cit,j, 1 t `, 1 j n are already defined.

We define

Cij = xj

`Y

t=1

0

@
X

j0:(j,j0)2E(G)

Cit,j
0

1

A .

Finally, we define the polynomial Q as

Q(X) =
nX

j=1

C1j.

By definition, it follows that Cij is a homogeneous polynomial of degree |V (Ti)| for

each i 2 [k]. Consequently, Q(X) is a homogeneous degree-k polynomial.

Claim 4. Let i 2 [k] and the subtree Ti have r nodes. Then the number of degree-r

multilinear monomials in Cij is exactly the number of homomorphic embeddings of

Ti in G that maps i to j. Hence, the number of degree-r multilinear monomials in
P

j2V (G) Cij is the number of homomorphic embeddings of Ti in G.

The above claim is easily proved by induction on the size of Ti. It is clearly true for

|V (Ti)| = 1. In general, suppose i1, i2, . . . , i` are the children of i in tree T . Any

homomorphic embedding ' : Ti ! G that maps i to j is defined uniquely by

homomorphic embeddings 't : Tit ! G such that the ranges of the 't are all disjoint

98

and the it map to distinct G-neighbors of j. Clearly, from the definition of Cij and

induction, it follows that there is a unique multilinear monomial of Cij that

corresponds to '. Conversely, each multilinear monomial defines a unique

homomorphic embedding ' : Ti ! G that maps i to j.

Thus, the exact counting k -Tree problem is solved by counting the number of

multilinear monomials in Q. By Theorem 16, it su�ces to construct for Q an ABP

of size poly(n, k).

From the recursively defined structure of the noncommutative formula for Cij we

can analyze the size. Let size` bound the noncommutative formula size for the

polynomial Q` defined as above for trees of size ` (note that Qk = Q). We note from

the formula structure that size1 = n and

sizek = nk +
`X

t=1

sizekt ,

where kt are the subtree sizes and k1 + k2 + · · · + k` = k � 1. Clearly, sizek nk2.

Thus, Q has a formulas of size at most nk2 which can be converted to an ABP of

size O(nk2) by standard techniques [SY10].

We now consider the exact counting version of the m-Dimensional k -Matching

problem: Let U1, U2, . . . , Um be mutually disjoint sets, and let C be a collection of

m-tuples from their cartesian product U1 ⇥ · · ·⇥ Um. An m-dimensional k-matching

in C is a subcollection of k many m-tuples such that no two of these m-tuples share

a common coordinate. Koutis and Williams [KW16] obtain a faster parameterized

algorithm for the decision version of this problem. We present an exact counting

algorithm as an application of Theorem 16.

Corollary 7. Given mutually disjoint sets Ui, i 2 [m], and a collection C of

m-tuples from U1 ⇥ · · ·⇥ Um , we can count the number of m-dimensional

k-matchings in C in deterministic O⇤
⇣�

n

#(m�1)k/2

�⌘
time.

99

Proof. Following [KW16], encode each element u in U = [
m

i=2Ui by a variable

xu 2 X. Encode each m-tuple t = (u1, . . . , um) 2 C ✓ U1 ⇥ · · ·⇥ Um by the

monomial Mt =
Q

m

i=2 xui . Assume U1 = {u1,1, . . . , u1,n}, and let Tj ✓ C denote the

subset of m-tuples whose first coordinate is u1,j. Consider the polynomial,

P (X, z) =
nY

j=1

0

@1 +
X

t2Tj

(z ·Mt)

1

A

Clearly, P (X, z) has an ABP of size poly(n,m, |C|). Let Q(X) = [zk]P (X, z). In

polynomial time we can obtain an ABP of size poly(n,m, |C|) for Q(X) by the

standard method of Vandermonde matrix based interpolation on the variable z.

Clearly, Q(X) is a homogeneous degree-km polynomial and the nonzero multilinear

monomials of Q(X) are in 1 � 1 correspondence with the m-dimensional

k-matchings in C. Therefore, the number of multilinear terms in Q(X) is the

required count. We can now apply the first part of Theorem 16 to count the number

of multilinear terms in Q(X).

Hardness of the rectangular permanent over general rings

In [BHKK10], it is shown that the k ⇥ n rectangular permanent can be evaluated

over commutative rings and commutative semirings in O(h(k) · poly(n, k)) time for

some computable function h. In other words, the problem is in FPT, parameterized

by the number of rows. An interesting question is to ask whether one can get any

FPT algorithm when the entries are from noncommutative rings (in particular,

matrix rings). We prove that such an algorithm is unlikely to exist. We show that

counting the number of k-paths in a graph G, a well-known #W[1]-complete

problem, reduces to this problem. So, unless ETH fails we do not have such an

algorithm [DF13].

100

Theorem 17. Given a k⇥ n matrix X with entries xij 2 Matt⇥t(Q), computing the

rectangular permanent of X is #W[1]-hard with k as the parameter where

t = (k + 1)n under polynomial-time many-one reduction.

Proof. If we have an algorithm to compute the permanent of a k ⇥ n matrix over

noncommutative rings which is FPT in parameter k, that yields an algorithm which

is FPT in k for evaluating the polynomial S⇤
n,k

on matrix inputs. This follows from

Observation 3. Now, given a graph G we can compute a homogeneous ABP of

width n and k layers for the graph polynomial CG defined as follows.

Let G(V,E) be a directed graph with n vertices where V (G) = {v1, v2, . . . , vn}. A

k-walk is a sequence of k vertices vi1 , vi2 , . . . , vik where (vij , vij+1) 2 E for each

1 j k � 1. A k-path is a k-walk where no vertex is repeated. Let A be the

adjacency matrix of G, and let y1, y2, . . . , yn be noncommuting variables. Define an

n⇥ n matrix B

B[i, j] = A[i, j] · yi, 1 i, j n.

Let
¯
1 denote the all 1’s vector of length n. Let

¯
y be the length n vector defined by

¯
y[i] = yi. The graph polynomial CG 2 FhY i is defined as

CG(Y) =
¯
1T · Bk�1

·

¯
y.

Let W be the set of all k-walks in G. The following observation is folklore.

Observation 4.

CG(Y) =
X

vi1vi2 ...vik
2W

yi1yi2 · · · yik .

Hence, G contains a k-path if and only if the graph polynomial CG contains a

multilinear term.

Clearly the number of k-paths in G is equal to (CG � Sn,k)(¯
1). By Lemma 10, we

know that it su�ces to compute (CG � S⇤
n,k

)(
¯
1). We construct kn⇥ kn matrices

101

A1, . . . , An from the ABP of CG following Lemma 11. Then from Lemma 11, we

know that (CG � S⇤
n,k

)(
¯
1) = S⇤

n,k
(A1, . . . , An)(1, t) where t = (k + 1)n. So if we have

an algorithm which is FPT in k for evaluating S⇤
n,k

over matrix inputs, we also get

an algorithm to count the number of k-paths in G in FPT(k) time.

5.3 Multilinear Monomial Detection

The next algorithmic result we obtain is the following.

Theorem 18. The k -MMD problem for any arithmetic circuit C of poly(n) size,

has a randomized O⇤(4.32k)-time and polynomial space-bounded algorithm.

Again, the underlying field F could be any field whose elements can be e�ciently

represented, with e�ciently computable field operations. First, we give an algorithm

for computing the Hadamard product for a special case in the commutative setting.

Any depth two ⇧[k]⌃ circuit computes the product of k homogeneous linear forms

over the input set of variables X.

Lemma 12. Given an arithmetic circuit C of size s computing g 2 F[X], and a

homogeneous ⇧[k]⌃ circuit computing f 2 F[X], and any point
¯
a 2 Fn, we can

evaluate (f �
s g)(

¯
a) in O⇤(2k) time and in polynomial space.

Proof. By standard homogenization technique [SY10, Theorem 2.2] we can extract

the homogeneous degree-k component of C and thus we can assume that C

computes a homogeneous degree-k polynomial. Write f =
Q

k

j=1 Lj, for

homogeneous linear forms Lj. The corresponding noncommutative polynomial f̂ is

defined by the natural order of the j indices (and replacing xi by yi for each i).

Claim 5. The noncommutative polynomial f ⇤ has a (noncommutative) ⌃[2k]⇧[k]⌃

circuit, which we can write as f ⇤ =
P2k

i=1 Ci, where each Ci is a (noncommutative)

⇧[k]⌃ circuit.

102

Before we prove the claim, we show that it easily yields the desired algorithm. First,

we notice that

C � f ⇤ =
2kX

i=1

C � Ci.

Now, by Theorem 6, we can compute in poly(n, s, k) time a poly(n, s, k) size circuit

for the (noncommutative) Hadamard product C � Ci. As argued in the proof of

Lemma 10, for any
¯
a 2 Fn we have

(g �s f)(
¯
a) = (C �

s f)(
¯
a) = (C � f ⇤)(

¯
a).

Thus, we can evaluate (g �s f)(
¯
a) by incrementally computing (C �Ci)(¯

a) and adding

up for 1 i 2k. This can be clearly implemented using only polynomial space.

Proof of Claim 5. By definition,

f ⇤ =
X

�2Sk

L̂�(1)L̂�(2) · · · L̂�(k).

Now define the k ⇥ k matrix T such that the elements in each row of T are the

linear forms L̂1, L̂2, . . . , L̂k in this order. Then the (noncommutative) permanent of

T is given by

Perm(T) =
X

�2Sk

kY

j=1

L̂�(j)

which is just f ⇤.

We will now apply Ryser’s formula [Rys63] to express Perm(T) as a depth-3

homogeneous noncommutative ⌃[2k]⇧[k]⌃ formula. We recall Ryser’s formula

[Rys63] for Per(A), where A is a k ⇥ k matrix with noncommuting entries Aij:

Per(A) =
X

S✓[k]

(�1)|S|
kY

i=1

X

j2S

Aij.

It is a ⌃[2k]⇧[k]⌃ formula for the k ⇥ k noncommutative permanent. Now,

103

substituting L̂j for Aij 1 i, j k, it follows that f ⇤ = Per(T) has a ⌃[2k]⇧[k]⌃

noncommutative formula. Note that Ryser’s formula is usually given for the

commutative permanent. It is easy to observe that the same proof, based on the

principle of inclusion-exclusion, also holds for the noncommutative permanent.

Remark 9. Over the rationals, we can get an alternative proof of Lemma 12 by

using Fischer’s identity [Fis94] to obtain a ⌃[2k]⇧[k]⌃ formula for f ⇤.

Now we are ready to prove Theorem 18.

Proof. By homogenization, we can assume that C computes a homogeneous degree

k polynomial f .

We will refer to maps ⇣ : [n] ! [k] as coloring maps. The map ⇣ can be seen as

assigning colors2 to the elements of [n]: ⇣(i) is the color of i.

We will pick a collection of coloring maps {⇣i : [n] ! [k]} each picked independently

and uniformly at random. For each coloring map ⇣i we define a ⇧[k]⌃ formula

Pi =
kY

j=1

X

`:⇣i(`)=j

x`.

A monomial is covered by a coloring map ⇣i if the monomial is nonzero in Pi. The

probability that a random coloring map covers a given degree-k multilinear

monomial is

k! · k�k
⇡ e�k.

Hence, for a collection C of O⇤(ek) many coloring maps C = {⇣i : [n] ! [k]} picked

independently and uniformly at random, it holds with a constant probability that

every multilinear monomial of degree k is covered at least once by some ⇣i in C.

2
The terminology is in keeping with a seminal paper in the field [AYZ95] which introduced the

color-coding technique. However, it should be clear that this notion of coloring has nothing to do

with graph colorings.

104

This probability bound is by a simple and standard union bound argument. Now,

for each coloring map ⇣i 2 C we consider the circuit C 0
i
= C �

s Pi.

Notice that for each multilinear monomial m, the multiplicative factor m! is 1. Also,

the coe�cient of each monomial is exactly 1 in each Pi, and if f contains a

multilinear term then it is covered by some Pi. Now, we perform the randomized

polynomial identity test on each circuit C 0
i
by applying the Polynomial Identity

Lemma [DL78, Zip79, Sch80] in randomized polynomial time to complete the

procedure. More precisely, we pick a random
¯
a 2 Fn and evaluate C 0

i
at

¯
a to check if

it is nonzero. By Lemma 12, the computation of C 0
i
(
¯
a) can be done deterministically

in time O⇤(2k) time and poly(n, k) space3. Hence the total running time of the

procedure is O⇤((2e)k).

In order to improve the running time to O⇤(4.32k), we apply the color-coding

technique of Hü↵ner et al. [HWZ08]. The idea is to use more than k colors to reduce

the number of coloring maps required to cover the degree-k monomials. But this

would increase the formal degree of each depth two circuit which we need to handle.

We will use 1.3k colors4 and each circuit Pi will now be a ⇧[1.3k]⌃ circuit. For each

coloring map ⇣i : [n] ! [1.3k] chosen uniformly at random, we define the following

⇧[1.3k]⌃ circuit

Pi(x1, x2, . . . , xn, z1, . . . , z1.3k) =
1.3kY

j=1

0

@
X

`:⇣i(`)=j

x` + zj

1

A .

Since each Pi is of degree 1.3k, we need to modify the circuit C to another circuit C 0

of degree 1.3k in order to apply Hadamard products. To that end, we define the

3
Since the syntactic degree of the circuit is not bounded here, and if we have to account for the

bit level complexity (over Z) of the scalars generated in the intermediate stage we may get field

elements whose bit-level complexity is exponential in the input size. So, a standard technique is to

take a random prime of polynomial bit-size and evaluate the circuit modulo that prime.
4
By 1.3k and 0.3k, we mean the integers d1.3ke and d0.3ke, respectively.

105

circuit C 0
2 F[X,Z] as follows

C 0(X,Z) = C(X) · S1.3k,0.3k(z1, . . . , z1.3k),

where S1.3k,0.3k(z1, . . . , z1.3k) is the elementary symmetric polynomial of degree 0.3k

over the variables z1, . . . , z1.3k. By the result of [HWZ08], for O⇤(1.752k) random

coloring maps, with high probability each multilinear monomial in C is covered by

the monomials of some Pi (over the X variables).

Now to compute cC 0 � P ⇤
i

for each i, we symmetrize the polynomial Pi. Of course,

the symmetrization happens over the X variables as well as over the Z variables.

But in cC 0 we are only interested in the monomials (or words) where the rightmost

0.3k variables are over Z variables. In the noncommutative circuit cC 0, every

subword zi1zi2 . . . zi0.3k receives a natural ordering i1 < i2 < . . . < i0.3k.

Notice that

P ⇤
i
(Y, Z) =

X

�2S1.3k

1.3kY

j=1

0

@
X

`:⇣i(`)=�(j)

y` + z�(j)

1

A .

Our goal is to understand the part of P ⇤
i
(Y, Z) where each monomial ends with a

subword of the form zi1zi2 . . . zi0.3k and the top k symbols are over the X variables.

For a fixed set of indices W = {i1 < i2 < . . . < i0.3k}, define the set T = [1.3k] \W .

Let S[k],T be the set of permutations � 2 S1.3k such that � : [k] ! T and

�(k + j) = ij for 1 j 0.3k. As we have fixed the last 0.3k positions, each

� 2 S[k],T corresponds to some �0
2 Sk. Let ZW = zi1zi2 . . . zi0.3k . Now we notice the

following.

Observation 5. The part of P ⇤
i
(Y, Z) where each monomial ends with the subword

ZW is P ⇤
i,W

· ZW , where

P ⇤
i,W

(Y) =
X

�2S[k],T

kY

j=1

0

@
X

`:⇣i(`)=�(j)

y`

1

A =
X

�02Sk

kY

j=1

0

@
X

`:⇣i(`)=�0(j)

y`

1

A .

106

Now, just like the case above, it su�ces to perform polynomial identity testing for

(cC 0 � P ⇤
i
)(Y, Z) =

X

W✓[1.3k]:|W |=0.3k

�
C(Y) � P ⇤

i,W
(Y)
�
· ZW .

for each i. But this is same as testing C 0
�
s Pi for identity. Now we eliminate the Z

variables by substituting 1 and evaluate X variables on a random point
¯
a 2 Fn. By

Lemma 12, (C 0
�
s Pi)(¯

a,
¯
1) can be computed in O⇤(21.3k) = O⇤(2.46k) time and

poly(n, k) space. The bound on the success probability follows from Polynomial

Identity Lemma [DL78, Zip79, Sch80].

We repeat the above procedure for each coloring map and obtain a randomized

O⇤(4.32k) algorithm. This completes the proof of Theorem 18.

5.4 Deterministic Algorithms for Depth Three

Circuits

Next, we state the results showing fast deterministic algorithms for depth three

circuits. We use the notation ⌃[s]⇧[k]⌃ to denote depth three circuits of top ⌃ gate

fan-in s and the ⇧ gates compute the product of k homogeneous linear forms over X.

Theorem 19. Given any homogeneous depth three ⌃[s]⇧[k]⌃ circuit of degree k, the

(k,n)-MLC problem can be solved in deterministic O⇤(2k)-time. Over Z, the k -MMD

problem can be solved in deterministic O⇤(4k)-time. Over finite fields, k -MMD

problem can be solved in deterministic ekkO(log k)O⇤(2ck + 2k) time, where c 5.

It is well-known that the elementary symmetric polynomial Sn,k can be computed

using an ABP of size poly(n, k). Here the key observation is that we can e�ciently

compute the commutative Hadamard product of a depth three circuit with any

circuit. These are obtained by a simple application of Hadamard product combined

107

with symmetrization. We will require the following.

Theorem 20. [AJS09, Theorem 4] Let A and B be noncommutative ABPs of sizes

s1 and s2, computing homogeneous degree-k polynomials f1, f2 2 FhY i, respectively.

Then, we can compute an ABP of size O(s1s2) for the Hadamard product f1 � f2 in

deterministic poly(s1, s2) time. Furthermore, if A and B are ⇧[k]⌃ circuits, then we

can compute a ⇧[k]⌃ circuit for f1 � f2 in poly(s1, s2) time.

We now prove Theorem 19.

Proof. Let C be the given ⌃[s0]⇧[k]⌃ circuit computing the polynomial f 2 F[X].

We first consider the k -MMD problem.

Suppose the coe�cients are integers (without loss of generality, if we assume the

underlying field is rationals). Let C =
P

s
0

i=1 Ci where each Ci is a ⇧[k]⌃ circuit. We

obtain a circuit for C �
s C(X) as follows. By Corollary 5, it su�ces to obtain a

circuit for C � C⇤(Y). Notice that C⇤ =
P

s
0

i=1 C
⇤
i

and by Claim 5 we know that each

C⇤
i

is a ⌃[2k]⇧[k]⌃ circuit which can be computed in O⇤(2k) time. By distributivity,

the problem of computing C � C⇤(Y) reduces to computing the noncommutative

Hadamard product of s0 · 2k many pairs of depth-two ⇧[k]⌃ circuits. By Theorem 20,

each such Hadamard product can be computed in poly(n, k) time. Hence, we obtain

a depth three commutative ⌃[s0·2k]⇧[k]⌃ circuit C̃ for C �
s C(X) in O⇤(2k) time.

Note that m is a nonzero monomial in C if and only if [m]C̃ > 0.

Let B be the poly(n, k) size ABP for Sn,k. Now the idea is to compute C̃ �
s B(

¯
1),

and if it is nonzero, we know that C contains a degree-k multilinear term. Again

this reduces to computing s0 · 2k scaled Hadamard products, each of the form

⇧[k]⌃ �
s B(

¯
1). By Lemma 12, each such computation can be done in O⇤(2k) time

incurring a overall running time O⇤(4k).

In the case of finite fields, the above proof does not work since C̃ �
s B(

¯
1) could be

zero modulo the characteristic.The idea is similar to the proof of Theorem 18. But

108

instead of random coloring maps we pick ⇣i : [n] ! [k] from the explicit (n, k)-family

perfect hash functions constructed in [NSS95], which is of size ekkO(log k) log n, and

define a ⇧[k]⌃ formula

Pi =
kY

j=1

X

`:⇣i(`)=j

x`

for each coloring map ⇣i. Now for each i, we construct the circuit C 0
i
= C �

s Pi. As

already explained each C 0
i
(X) is a ⌃[s0·2k]⇧[k]⌃ circuit and it can be obtained in

deterministic O⇤(2k) time. Clearly, if C contains a multilinear monomial, we can

detect it by doing identity testing of each C 0
i
. Now we apply a result of Saxena

[Sax08] where he shows that the identity testing of a ⌃⇧[k]⌃ circuit over finite fields

can be done in deterministic O⇤(2ck) time where the constant c 5. The final

running time is ekkO(log k)O⇤(2ck + 2k).

As a by-product of the above technique, we get a fast deterministic algorithm to

compute the sum of the coe�cients of degree-k multilinear monomials in a depth

three circuit, solving the (k,n)-MLC problem. Notice that, we need to compute

C �
s B(

¯
1). As already explained, it can be obtained in deterministic O⇤(2k) time.

Remark 10. The main result of [Sax08, Theorem 1] is actually a polynomial

identity testing algorithm for a larger class of circuits. It also uses the identity

testing algorithm for noncommutative ABPs [RS05]. Indeed, the bound c 5 is from

[RS05, Theorem 4].

5.5 A Comparison to Related Works

We now broadly compare the Hadamard product used in this chapter with the

apolar inner product used in the work of Pratt and others [Pra18, Pra19, BP21].

Recall, given two commutative homogeneous degree d polynomials f and g in F[X],

109

the apolar inner product hf, gi is defined as follows.

hf, gi = f

✓
@

@x1
, . . . ,

@

@xn

◆
g =

X

m

m![m]f · [m]g,

where the sum is over all degree-d monomials m = xe1
1 xe2

2 . . . xen
n

2 Xd.

The Waring rank of a homogeneous degree-d polynomial f 2 F[X] is the least r

such that f =
P

r

j=1 ↵j ·Ld

j
, where for each j, ↵j 2 F and Lj is a homogeneous linear

form. If f has Waring rank r and g is given by an arithmetic circuit Pratt

[Pra18, Pra19] has shown that the apolar inner product of f and g can be computed

in O⇤(r) time. Hence, using the Waring decomposition of the elementary symmetric

polynomials (over the field of rationals) [Lee15] yields faster algorithms [Pra19] for

k -MMD and (k,n)-MLC: O⇤(4.08k)-time for k -MMD and O⇤(nk/2)-time for

(k,n)-MLC) over the field of rationals.

However, the Waring decomposition does not appear to have a finite field analogue.

For example, over F2 the polynomial xy has no Waring decomposition. In

comparison, our algorithms are essentially oblivious to the underlying field.

More recently, Brand and Pratt [BP21] have shown that the apolar inner product of

commutative polynomials f and g can be computed in O⇤(r) time if the partial

derivative space of f has rank r. This strengthens Pratt’s result [Pra19] as the

Waring rank of f is an upper bound on its partial derivative rank.

It is interesting to compare this with the Hadamard product based approach of this

chapter. We first note that the apolar inner product of polynomials f, g 2 F[X] can

be computed by first computing their scaled Hadamard product (see Section 5.1)

and evaluating the resulting polynomial at xi = 1 for each i 2 [n]. Furthermore, the

computation of the Hadamard product of f and g can be done e�ciently, as shown

in Lemma 10 (Section 5.1), in time polynomial in the noncommutative algebra

branching program complexity B(f ⇤) (i.e. the minimum size of the ABP computing

110

f ⇤) of the noncommutative polynomial f ⇤. The partial derivative space rank of f

essentially coincides with B(f ⇤):

Fact 2. For any commutative polynomial f , the ABP complexity B(f ⇤) of f ⇤ is the

dimension of the space of partial derivatives of f .

Proof. Let f 2 F[X] be a homogeneous degree-k commutative polynomial, where

X = {x1, x2, . . . , xn} is a set of commuting variables. Let Y = {y1, y2, . . . , yn} be a

corresponding set of free noncommuting variables.

Recall that Nisan [Nis91] has shown that the ABP complexity B(g) of a

noncommutative polynomial g 2 FhY i of degree k is exactly
P

k

`=1 rank(M`(g))

where the matrix M`(g) is defined as follows. The rows of M`(g) are indexed by

words in Y ` and the columns of M`(g) are indexed by words in Y k�`. For some

w1 2 Y ` and w2 2 Y k�`, the (w1, w2)th entry of M`(g) is [w1w2]g.

We now consider the matrix M`(f ⇤) for the noncommutative polynomial f ⇤
2 FhY i.

Let w1 2 Y ` and w2 2 Y k�`. Let � 2 S` and ⌧ 2 Sk�` be any permutations. By

definition of f ⇤, it is clear that

M`(f
⇤)(w1, w2) = M`(f

⇤)(w�

1 , w
⌧

2).

In particular, the row of M`(f ⇤) indexed by w1 is identical to the row indexed by w�

1 .

Furthermore, the row of M`(f ⇤) indexed by w1 has the following structure for any

w1 2 Y `: the w2-th entry of this row is the same as the w⌧

2 -th entry of this row.

Now consider the partial derivative matrix of f , M̃`(f) defined as follows. The rows

of M̃`(f) are indexed by commuting degree-` monomials in X`. For some m 2 X`,

the corresponding row is the coe�cient vector of @f

@m
.

It follows from the above considerations that a subset of rows of M̃`(f) labeled by

monomials m1,m2, . . . ,mr are linearly independent if and only if for noncommuting

111

monomials w1, w2, . . . , wr, such that wi ! mi, the rows of row of M`(f ⇤) indexed by

the wi are linearly independent.

Therefore, rank(M`(f ⇤)) = rank(M̃`(f)), which completes the proof.

Conclusion

We conclude with the following arithmetic circuit complexity question, a positive

answer to which would have interesting algorithmic implications: Is there a

polynomial f over the rationals that is positively weakly equivalent5 to the

elementary symmetric polynomial Sn,k such that the ABP complexity B(f ⇤) is

O⇤(2k)? It would even su�ce to show that f ⇤ has arithmetic circuits of size O⇤(2k)

to improve on the current best deterministic algorithm for the k-path problem.

5
A polynomial g is positively weakly equivalent to f if it has the same set of nonzero monomials,

with any positive coe�cients.

112

Chapter 6

On Explicit Branching Programs

for the Rectangular Determinant

and Permanent Polynomials

We have so far studied the image of noncommutative polynomials in various general

settings and computation of Hadamard product in the commutative setting via a

reduction to the noncommutative computation in the previous chapters. In this

chapter, we initiate the study of explicit construction of noncommutative ABPs (see

Definition 19 for more details). Recall that, the ABP complexity of a

noncommutative polynomial is exactly characterized by the rank of Nisan’s matrix

of the corresponding polynomial [Nis91]. The rank of Nisan’s matrix is extensively

used to show the lower bound for various noncommutative polynomials. From

Nisan’s characterization, we can argue the existence of an ABP of size equal to the

rank of Nisan’s matrix. However, explicit construction of such ABPs of the same

size was not known before our work. We study the explicit construction of

noncommutative ABPs for the rectangular version of permanent and determinant

polynomials and some related polynomials.

113

The rectangular permanent and the rectangular determinant are natural restrictions

and well-studied in literature. However, the motivation to study these polynomials

also emerges from the last chapter where we have shown that the multilinear

monomial counting problem reduces to the evaluation of rectangular permanent over

matrix rings. Whereas, for the decision version, we used a weakly equivalent

elementary symmetric polynomial. The Hadamard product framework (see

Chapter 5) shows that studying the ABP complexity of these polynomials may be

useful for a better understanding of these problems.

In this chapter also we often switch between commutative polynomials and

noncommutative polynomials. To avoid any confusion, we use X as a set of

commuting variables and Y, Z as a set of noncommuting variables.

Explicit Circuit Upper Bound: We now formally define what we mean by

explicit circuit upper bounds.

Definition 19 (Explicit Circuit Upper Bound). A family {fn}n>0 of degree-k

polynomials in the commutative ring F[x1, x2, . . . , xn] (or the noncommutative ring

Fhy1, y2, . . . , yni) is q(n, k)-explicit if there is an O⇤(q(n, k)) time-bounded uniform

algorithm A that on input h0n, ki outputs a circuit Cn of size O⇤(q(n, k)) computing

fn.

The same definition applies to the case of explicit ABP families as well. Notice that,

if an ABP is s-explicit then the number of edges in the ABP is O(s). It is important

to note that, if we consider the number of nodes as the size of an ABP then an

s-size ABP does not imply that the ABP is s-explicit as the number of edges in the

ABP can be O(s2).

114

6.1 Explicit construction of ABPs for S⇤

n,k and

Noncommutative Rectangular Permanent

We first recall the definition of kth elementary symmetric polynomial Sn,k 2 F[X],

over the n variables X = {x1, x2, . . . , xn},

Sn,k(X) =
X

S✓[n]:|S|=k

Y

i2S

xi.

Recall that Sn,k(X) can be computed by an algebraic branching program of size

O(nk). In this chapter, we consider again the noncommutative symmetrized version

S⇤
n,k

, in the ring FhY i where Y = {y1, . . . , yn}, defined as:

S⇤
n,k

(Y) =
X

T✓[n]:|T |=k

X

�2Sk

Y

i2T

y�(i).

The complexity of the polynomial S⇤
n,k

is first considered by Nisan in his seminal

work in noncommutative computation [Nis91]. Nisan shows that any ABP for S⇤
n,k

is of size ⌦(
�

n

#k/2

�
) 1. Furthermore, Nisan also shows the existence of an ABP of size

O(
�

n

#k/2

�
) for S⇤

n,k
. However, it is not clear how to construct such an ABP in time

O(
�

n

#k/2

�
). Note that an ABP of size O⇤(nk) for S⇤

n,k
can be directly constructed in

O⇤(nk) time by opening up the expression completely. The main upper bound

question is whether we can achieve any constant factor saving of the parameter k in

the exponent, in terms of size and run time of the construction. In this chapter, we

give such an explicit construction of size O⇤(
�

n

#k/2

�
) and the construction takes

O⇤(
�

n

#k/2

�
) time. Recall from the previous chapter that the O⇤ notation suppresses

the poly(n, k) factor. Note that Nisan’s result [Nis91] also rules out any FPT(k)-size

ABP for S⇤
n,k

, where FPT(k) means a bound of the form f(k)nO(1).

The next polynomial of our interest is the rectangular permanent polynomial. Given

1
Recall that,

� n
#r
�
denotes

Pr
i=0

�n
i

�
.

115

a k ⇥ n rectangular matrix X = (xi,j)1ik,1jn of commuting variables or a k ⇥ n

rectangular matrix Y = (yi,j)1ik,1jn of noncommuting variables, the rectangular

permanent polynomial in commutative and noncommutative domains are defined as

follows

rPer(X) =
X

�2Ik,n

kY

i=1

xi,�(i), rPer(Y) =
X

�2Ik,n

kY

i=1

yi,�(i).

Here, Ik,n is the set of all injections from [k] ! [n]. An alternative view is that

rPer(X) =
P

S⇢[n]:|S|=k
Per(XS) where XS is the k ⇥ k submatrix where the

columns are indexed by the set S. Of course, such a polynomial can be computed in

time O⇤(nk) using a circuit of similar size, the main interesting issue is to

understand whether the dependence on the parameter k can be improved. It is

implicit in the work of Vassilevska and Williams [WW13] that the rPer(X)

polynomial in the commutative setting can be computed by an algebraic branching

program of size O⇤(2k). This problem originates from its connection with

combinatorial problems studied in the context of exact algorithm design [WW13].

In the noncommutative setting, we start with the polynomial S⇤
n,k

(Y) and then

make the polynomial set-multilinear to obtain rPer(Y). More precisely, we replace

each yi at position j by the variable yj,i. With a slight abuse of notation, it is easy

to see that the resulting polynomial is rPer(Y) where Y is a k ⇥ n symbolic matrix

of noncommuting variables. Since we already have an explicit ABP construction for

S⇤
n,k

(Y) polynomial which is of size O⇤(
�

n

#k/2

�
), we just make the ABP set-multilinear

to obtain an ABP for rPer(Y) in the noncommutative setting. Clearly the size and

the time to construct the resulting ABP for rPer(Y) are bounded by O⇤(
�

n

#k/2

�
).

Theorem 21.

1. The family of symmetrized elementary polynomials {S⇤
n,k

(Y)}n>0 has
�

n

#k/2

�
-explicit ABPs over any field.

116

2. The noncommutative rectangular permanent family {rPer(Y)}n>0, where Y is

a k ⇥ n symbolic matrix of variables has
�

n

#k/2

�
-explicit ABPs.

Remark 11. We note here that there is an algorithm of run time O⇤(
�

n

#k/2

�
) for

computing the rectangular permanent over rings and semirings [BHKK10]. Our

contribution in the second part of Theorem 21 is that we obtain an
�

n

#k/2

�
-explicit

ABP for it.

Proof. We now present the construction of explicit ABPs for S⇤
n,k

(Y) and

noncommutative rPer(Y).

Construction of ABP for S⇤
n,k

: The construction of the ABP for S⇤
n,k

(Y) is

inspired by an inclusion-exclusion-based dynamic programming algorithm for the

disjoint sum problem [BHKK09].

Let us denote by F the family of subsets of [n] of size exactly k/2. Let #F denote

the family of subsets of [n] of size at most k/2. For a subset S ⇢ [n], we define

mS =
Q

j2S yj where the product is taken in the natural order. Let us define

fS =
X

�2Sk/2

k/2Y

j=1

yi�(j)

where S 2 F and S = {i1, i2, . . . , ik/2}, otherwise for subsets S /2 F , we define

fS = 0. Note that, for each S 2 F , fS is the symmetrization of the monomial mS.

For each S 2#F , let us define f̂S =
P

S✓A
fA where A 2 F . We now show, using the

inclusion-exclusion principle, that we can express S⇤
n,k

using an appropriate

combination of these symmetrized polynomials for di↵erent subsets.

Lemma 13.

S⇤
n,k

=
X

S2#F

(�1)|S|f̂S
2
.

117

Proof. Let us first note that, S⇤
n,k

=
P

A2F
P

B2F (A \B = ;)fAfB, where we use

(P) to denote that the proposition P is true. By the inclusion-exclusion principle:

S⇤
n,k

=
X

A2F

X

B2F

(A \B = ;)fAfB

=
X

A2F

X

B2F

X

S2#F

(�1)|S|(S ✓ A \B)fAfB

=
X

S2#F

(�1)|S|
X

A2F

X

B2F

(S ✓ A)(S ✓ B)fAfB

=
X

S2#F

(�1)|S|

X

A2F

(S ✓ A)fA

!2

=
X

S2#F

(�1)|S|f̂S
2
.

Now we describe two ABPs where the first ABP simultaneously computes fA for

each A 2 F and the second one simultaneously computes f̂S for each S 2#F .

Lemma 14. There is an
�

n

#k/2

�
-explicit multi-output ABP B1 that outputs the

collection {fA} for each A 2 F .

Proof. The construction of the ABP is simple. It consists of (k/2 + 1) layers where

layer ` 2 {0, 1, . . . , k/2} has
�
n

`

�
many nodes indexed by ` size subsets of [n]. In

(` + 1)th layer, the node indexed by the set T is connected to the nodes T \ {j} in

the previous layer with an edge label yj for each j 2 T . Clearly, in the last layer, the

sink node indexed by the set A computes the polynomial fA.

Lemma 15. There is an
�

n

#k/2

�
-explicit multi-output ABP B2 that outputs the

collection {f̂S} for each S 2#F .

Proof. To construct such an ABP, we use ideas from [BHKK09]. We define

f̂i,S =
P

S✓A
fA where S ✓ A and A \ [i] = S \ [i]. Note that, f̂n,S = fS and

f̂0,S = f̂S. From the definition, it is clear that f̂i�1,S = f̂i,S + f̂i,S[{i} if i /2 S and

f̂i�1,S = f̂i,S if i 2 S. Hence, we can take a copy of ABP B1 from Lemma 14, and

118

then simultaneously compute f̂i,S for each S 2#F and i ranging from n to 0.

Clearly, the new ABP B2 consists of (n + k/2 + 1) many layers and at most
�

n

#k/2

�

nodes at each layer. The number of edges in the ABP is also linear in the number of

nodes.

Let f =
P

m2Y k [m]f ·m be a noncommutative polynomial of degree k in FhY i. The

reverse of f is defined as the polynomial

fR =
X

m2Y k

[m]f ·mR,

where mR is the reverse of the word m.

Lemma 16. [Reversing an ABP] Suppose B is a multi-output ABP with r sink

nodes where the ith sink node computes fi 2 FhY i for each i 2 [r]. We can construct

an ABP of twice the size of B that computes the polynomial
P

r

i=1 fi · Li · fR

i
where

Li are a�ne linear forms.

Proof. Suppose B has ` layers, then we construct an ABP of 2`+ 1 layers where the

first ` layers are the copy of ABP B and the last ` layers are the mirror image of

the ABP B, call it BR. More precisely, the ABP BR is a r-source and single sink

ABP, where the polynomial computed between ith source and the sink is the

polynomial fR

i
. In the (` + 1)th layer we connect the ith sink node of ABP B to the

ith source node of BR by an edge with the edge label Li. Note that, BR has r source

nodes and one sink node and the polynomial computed between ith source node and

sink is fR

i
.

Now, applying the construction of Lemma 16 to the multi-output ABP B2 of

Lemma 15 with LS = (�1)|S| we obtain an ABP that computes the polynomial
P

S
(�1)|S|f̂S · f̂R

S
. Since f̂S is a symmetrized polynomial, we note that f̂R

S
= f̂S and

119

using Lemma 13 we conclude that this ABP computes S⇤
n,k

. The ABP size is

O(k
�

n

#k/2

�
). It completes the proof of the first part.

Construction of ABP for rectangular permanent: A
�

n

#k/2

�
-explicit ABP

for the rectangular permanent polynomial can be obtained easily from the
�

n

#k/2

�
-explicit ABP for S⇤

n,k
(Y) by making the ABP set-multilinear.

More precisely, let A be the
�

n

#k/2

�
-explicit ABP for S⇤

n,k
(Y) obtained above. Recall

that,

S⇤
n,k

(Y) =
X

T✓[n]:|T |=k

X

�2Sk

Y

i2T

y�(i).

To make the ABP set-multilinear, we simply rename the variables yi : 1 i n at

the position 1 j k by yj,i. It is immediate that the resulting polynomial is

rPer(Y).

Remark 12. Given an arithmetic circuit C of size s computing a degree-k

polynomial f 2 F[X], it is possible to compute the sum of the coe�cients of all the

multilinear terms present in f in O⇤(
�

n

#k/2

�
· nc·log k)-time (where c is a constant) as

shown in Chapter 5.Recall that, the key observation is that f � Sn,k(¯
1) is the sum of

the coe�cients of all the multilinear terms. It is also proved that for any

¯
a 2 Fn : f � Sn,k(¯

a) = C � S⇤
n,k

(
¯
a) for the noncommutative analog of C. Then the

algorithm reduces the computation of C � S⇤
n,k

(
¯
1) to a computation of a rectangular

permanent over matrix inputs and appeal to the algorithm in [BHKK10]. Now using

Theorem 21, one gets an alternative viewpoint for this problrm. Let A be the ABP

obtained for S⇤
n,k

from Theorem 21. Using the standard circuit to ABP conversion

method [VSBR83], one can first construct an ABP B of size sO(log k) for f . Now

recall Theorem 5 from Chapter 2 that computes the Hadamard product of two

noncommutative ABPs e�ciently. We can now compute B � A(
¯
1) in time

O⇤(
�

n

#k/2

�
· nO(log k)).

120

6.2 Explicit ABP construction for

Noncommutative Determinant and Related

Polynomials

As in the usual commutative case, the noncommutative determinant polynomial of a

symbolic matrix Y = (yi,j)1i,jk is defined as follows (the variables in the

monomials are ordered from left to right):

Det(Y) =
X

�2Sk

sgn(�) y1,�(1) . . . yk,�(k).

Nisan [Nis91] has also shown that any algebraic branching program for the

noncommutative determinant of a k ⇥ k symbolic matrix must be of size ⌦(2k). In

this chapter, we give an explicit construction of such an ABP in time O⇤(2k).

Remark 13. In mathematics, noncommutative determinants are studied in various

forms. For example, Gelfand, Gelfand, Retakh, and Wilson have studied the

quasideterminants and successfully develop a version of Cramer’s rule [GGRL05].

Another important notion is Dieudonn’e determinant which originated from the

study of the determinant over division rings and local rings [Die43]. However, these

notions are di↵erent from the notion of the noncommutative determinant polynomial

studied in this chapter. Our motivation is mainly to study the complexity-theoretic

properties of the noncommutative determinant polynomial as an element in FhY i.

Recall the results of Vassilevska and Williams [WW13] for commutative rectangular

permanent. Motivated by those results, we study the complexity of the rectangular

determinant polynomial (in the commutative domain) defined as follows.

rDet(X) =
X

S2([n]
k)

Det(XS).

121

We prove that the rectangular determinant polynomial can be computed using

O⇤(2k)-size explicit ABP.

Theorem 22.

1. The family of noncommutative determinants {Det(Y)}k>0 has 2k-explicit

ABPs over any field.

2. There is a family {fn} of noncommutative degree-k polynomials fn such that

fn has the same support as S⇤
n,k

, and it has 2k-explicit ABPs. This result holds

over any field that has at least n distinct elements.

3. The commutative rectangular determinant family {rDet(X)}k>0, where X is a

k ⇥ n matrix of variables has 2k-explicit ABPs.

Remark 14. It is interesting to compare the results stated in Theorem 21 and

Theorem 22. In Theorem 21, the polynomial families are defined over two

parameters n and k, and the size of the ABPs are bounded by O⇤(
�

n

#k/2

�
). The first

result stated in Theorem 22 considers a polynomial family with only one parameter

k, and the size of the ABP is O⇤(2k). However, the second and the third results

consider the families of polynomials over two parameters n and k (like in Theorem

21) but the ABP sizes show parameterized dependence on the parameter k only.

Remark 15. It is important to note that one can also make Nisan’s results

constructive using existing techniques. For example, it is possible to adapt the

learning algorithm in [BBB+00] to design uniform algorithms that will construct the

ABP families stated in Theorem 21. However, the constructions are not
�

n

#k/2

�
-explicit.

We divide the proof into three subsections showing the explicit ABPs for

noncommutative determinant polynomial, a polynomial having the same support as

S⇤
n,k

, and commutative rectangular determinant polynomial.

122

A 2k-explicit ABP for k ⇥ k noncommutative determinant

In this section, we present an optimal explicit ABP construction for the

noncommutative determinant polynomial for the square symbolic matrix.

Proof of Theorem 22.1. The ABP B has k + 1 layers with
�
k

`

�
nodes at the

layer ` for each 0 ` k. The source of the ABP is labeled ; and the nodes in

layer ` are labeled by the distinct size ` subsets S ✓ [k], 1 ` k, hence the sink is

labeled [k]. From the node labeled S in layer `, there are k � ` outgoing edges

(S, S [{j}), j 2 [k] \ S.

Define the sign sgn(S, j) as sgn(S, j) = (�1)tj , where tj is the number of elements in

S larger than j. Equivalently, tj is the number of swaps required to insert j in the

correct position, treating S as a sorted list.

For noncommutative determinant polynomial, we connect the set S in the ith layer

to a set S [{j} in the (i + 1)th layer with the edge label sgn(S, j) · yi+1,j The source

to sink paths in this ABP are in 1-1 correspondence to the node labels on the paths

which give subset chains ; ⇢ T1 ⇢ T2 ⇢ · · · ⇢ Tk = [k] such that |Ti \ Ti�1| = 1 for

all i k. Such subset chains are clearly in 1-1 correspondence with permutations

� 2 Sk listed as a sequence: �(1), �(2), . . . , �(k), where Ti = {�(1), �(2), . . . , �(i)}.

The following claim spells out the connection between the sign sgn(�) of � and the

sgn(S, j) function defined above.

Claim 6. For each � 2 Sk and Ti = {�(1), �(2), . . . , �(i)}, we have

sgn(�) =
kY

i=1

sgn(Ti�1, �(i)).

Proof. We first note that sgn(�) = (�1)t, if there are t transpositions

(ri si), 1 i t such that � · (r1 s1) · (r2 s2) · · · (rt st) = 1. Equivalently,

interpreting this as sorting the list �(1), �(2), . . . , �(k) by swaps (ri si), applying

123

these t swaps will sort the list into 1, 2, . . . , k. As already noted,

sgn(Ti�1, �(i)) = (�1)ti , where ti is the number of swaps required to insert �(i) in

the correct position into the sorted order of Ti�1 (where �(i) is initially placed to

the right of Ti�1). Hence,
P

k

i=1 ti is the total number of swaps required for this

insertion sort procedure to sort �(1), �(2), . . . , �(k). It follows that
Q

k

i=1 sgn(Ti�1, �(i)) = (�1)
P

i ti = sgn(�), which proves the claim.

Now, it is easy to see that the ABP computes the noncommutative determinant

polynomial. We use Claim 6 to obtain sgn(�) for each �, and the edge labels are

already mentioned.

Remark 16. In [Gre11], Grenet shows the construction of an ABP of size 2k for

the permanent polynomial of the symbolic k ⇥ k matrix, and the construction is

similar to the above construction.

A 2k-explicit ABP weakly equivalent to S⇤

n,k

Recall from the last chapter that a polynomial f 2 F[X] (resp. FhY i) is said to be

weakly equivalent to a polynomial g 2 F[X] (resp. FhY i), if for each monomial m

over X, [m]f = 0 if and only if [m]g = 0. For the construction of an ABP

computing a polynomial weakly equivalent to S⇤
n,k

, we will suitably modify the ABP

construction described above.

Proof of Theorem 22.2. Let ↵i, 1 i n be distinct elements from F. For each

j 2 [k] \ S, the edge (S, S [{j}) is labeled by the linear form sgn(S, j) ·
P

n

i=1 ↵
j

i
yi,

where yi, 1 i n are noncommuting variables. This gives an ABP B of size

O⇤(2k).

We show that the polynomial computed by ABP B is weakly equivalent to S⇤
n,k

. B

computes a homogeneous degree k polynomial in the variables yi, 1 i n. We

determine the coe�cient of a monomial yi1yi2 · · · yik . As noted, each source to sink

124

path in B corresponds to a permutation � 2 Sk. Along that path, the ABP

computes the product of linear forms

sgn(�)L�(1)L�(2) · · ·L�(k), where L�(q) =
nX

i=1

↵�(q)
i

yi,

where the sign is given by the previous claim. The coe�cient of the monomial

yi1yi2 · · · yik in the above product is given by sgn(�)
Q

k

q=1 ↵
�(q)
iq

. Thus, the coe�cient

of yi1yi2 · · · yik in the ABP is given by
P

�2Sk
sgn(�)

Q
k

q=1 ↵
�(q)
iq

, which is the

determinant of the k ⇥ k Vandermonde matrix whose qth column is

(↵iq ,↵
2
iq
, . . . ,↵k

iq
)T . That determinant is non-zero if and only if the monomial

yi1yi2 · · · yik is multilinear. Clearly the proof works for any field that contains at

least n distinct elements.

Remark 17. A polynomial f 2 QhY i is positively weakly equivalent to S⇤
n,k

, if for

each multilinear monomial m 2 Y k, [m]f > 0. In the above proof, let g be the

polynomial computed by ABP B that is weakly equivalent to S⇤
n,k

. Clearly, f = g � g

is positively weakly equivalent to S⇤
n,k

, and f has a 4k-explicit ABP, since B is

2k-explicit. This follows from Theorem 5. We leave open the problem of finding a

2k-explicit ABP for some polynomial that is positively weakly equivalent to S⇤
n,k

.

Such an explicit construction would imply a deterministic O⇤(2k) time algorithm for

the k-path which is a longstanding open problem [KW16].

A 2k-explicit ABP for k ⇥ n commutative rectangular

determinant

In this section, we present the ABP construction for commutative determinant

polynomial for k ⇥ n symbolic matrix.

Proof of Theorem 22.3. We adapt the ABP presented in Subsection 6.2. The

main di↵erence is that, for the edge (S, S [{j}), the linear form is

125

sgn(S, j) · (
P

n

i=1 xj,izi), where zi : 1 i n are fresh noncommuting variables, and

the xj,i : 1 j k, 1 i n are commuting variables.

Then by an argument similar to the one in Subsection 6.2, the coe�cient of the

monomial zi1zi2 . . . zik where i1 < i2 < . . . < ik is given by
P

�2Sk
sgn(�)x�(1),i1 . . . x�(k),ik Now for a fixed � 2 Sk, let ⌧� be the injection

[k] ! [n] such that ⌧�(j) = i��1(j) : 1 j k.

Let (j1, j2) be an index pair that is an inversion in �, i.e. j1 < j2 and �(j1) > �(j2).

Let `1 = �(j1) and `2 = �(j2). So i⌧�(`1) = i��1(`1) and i⌧�(`2) = i��1(`2). Clearly,

i⌧�(`1) < i⌧�(`2). Hence:

X

�2Sk

sgn(�)x�(1),i1 . . . x�(k),ik =
X

⌧�2Ik,n

sgn(⌧�)x1,⌧�(1) . . . xk,⌧�(k).

Now the idea is to filter out only the good monomials zi1zi2 . . . zik where

i1 < i2 < . . . < ik from among all the monomials. This can be done by taking the

Hadamard product (using Theorem 5) with the following polynomial,

Snc

n,k
(Z) =

X

S={i1<i2<...<ik}

zi1zi2 . . . zik .

Clearly, Snc

n,k
has a poly(n, k)-sized ABP which is just the noncommutative version

(see Definition 16) of the well-known ABP for commutative Sn,k. Finally, we

substitute each zi = 1 to get the desired ABP for rDet(X).

126

6.3 Hardness of Rectangular Determinant Over

Matrix Algebras

Finally, we consider the problem of evaluating the noncommutative rectangular

determinant over matrix algebras and show that it is #W[1]-hard for polynomial

dimensional matrices. Hence the noncommutative rectangular determinant is

unlikely to have an explicit O⇤(no(k))-size ABP. Recall from Chapter 5, we have

shown the #W[1]-hardness of computing the noncommutative rectangular

permanents over poly-dimensional rational matrices. We note that the

noncommutative n⇥ n determinant over matrix algebras is well-studied, and

computing it remains #P-hard even over 2 ⇥ 2 rational matrices

[AS10, CHSS11, Blä15]. Our proof technique is based on the Hadamard product of

noncommutative polynomials [AS10]. However, the crucial di↵erence is that, to

show the #P-hardness of the noncommutative determinant, the proof in [AS10]

shows a reduction from the evaluation of the commutative permanent to the

noncommutative determinant; whereas, the #W[1]-hardness of the noncommutative

rectangular determinant requires a di↵erent proof route because the commutative

rectangular permanent is in FPT. We show that the rectangular determinant (and

the rectangular permanent), whose entries are r ⇥ r matrices over any field can be

computed in time O⇤(2kr2k).

Next, we describe the parameterized hardness result for rectangular determinant

polynomial when we evaluate over matrix algebras.

Theorem 23. For any fixed ✏ > 0, evaluating the k ⇥ n rectangular determinant

polynomial over n✏
⇥ n✏ rational matrices is #W[1]-hard, treating k as fixed

parameter.

In this section, we prove a hardness result for evaluating the rectangular

determinant over matrix algebras. More precisely, if A is a k ⇥ n matrix whose

127

entries Aij are n✏
⇥ n✏ rational matrices for a fixed ✏ > 0, then it is #W[1]-hard to

compute rDet(A). We show this by a reduction from the #W[1]-complete problem

of counting the number of simple k-paths in directed graphs.

Let G(V,E) be a directed graph with n vertices where V (G) = {v1, v2, . . . , vn}. A

k-walk is a sequence of k vertices vi1 , vi2 , . . . , vik where (vij , vij+1) 2 E for each

1 j k � 1. A k-path is a k-walk where no vertex is repeated. Let A be the

adjacency matrix of G, and let z1, z2, . . . , zn be noncommuting variables. Define the

n⇥ n matrix B as follows:

B[i, j] = A[i, j] · zi, 1 i, j n.

Let
¯
1 denote the all 1’s vector of length n. Let

¯
z be the length n vector defined by

¯
z[i] = zi. The polynomial CG 2 FhZi is defined as

CG(z1, z2, . . . , zn) =
¯
1T · Bk�1

·
¯
z.

Let W be the set of all k-walks in G. The following observation is folklore.

Observation 1.

CG(z1, z2, . . . , zn) =
X

vi1vi2 ...vik
2W

zi1zi2 · · · zik .

Hence, G contains a k-path if and only if the polynomial CG contains a multilinear

term.

128

The Proof of Theorem 23

Let Ik,n be the set of injections from [k] ! [n]. Define

S := {f 2 I2k,2n|9g 2 Ik,n such that 8i 2 [k], f(2i� 1) = g(i); f(2i) = n + g(i)}.

There is a bijection between S and Ik,n. We denote each f 2 S as fg where g 2 Ik,n

is the corresponding injection. By a simple counting argument, we observe the

following.

Observation 2. For each f 2 S, sgn(f) = (�1)
k(k�1)

2 .

Consider a set of noncommuting variables Y = {y1,1, y1,2, . . . , y2k,2n} corresponding

to the entries of a 2k ⇥ 2n symbolic matrix Y . Given f 2 I2k,2n, define

mf =
Q2k

i=1 yi,f(i).

Lemma 17. There is an ABP B of poly(n, k) size that computes a polynomial

F 2 FhY i such that for each f 2 I2k,2n, [mf]F = 1 if f 2 S. Otherwise [mf]F = 0.

Proof. The ABP B consists of 2k + 1 layers, labelled {0, 1, . . . , 2k}. For each even

i 2 [0, 2k], there is exactly one node qi at level i. For each odd i 2 [0, 2k], there are

n nodes pi,1, pi,2, . . . , pi,n at level i. We now describe the edges of B. For each even

i 2 [0, 2k � 2] and j 2 [n], there is an edge from qi to pi+1,j labeled yi+1,j. For each

odd i 2 [0, 2k � 1] and j 2 [n], there is an edge from pi,j to qi+1 labeled yi+1,n+j . For

an injection f 2 I2k,2n, B contributes a monomial mf if and only if f 2 S and B

can be computed in poly(n, k) time.

Suppose Y is a 2k ⇥ 2n matrix where the (i, j)th entry is yi,j . By Observation 2 and

Lemma 17,

rDet(Y) � F (Y) =
X

fg2S

sgn(fg)mfg = (�1)
k(k�1)

2

X

g2Ik,n

mfg .

129

Let Z = {z1, . . . , zn} be a set of noncommuting variables. Define for each g 2 Ik,n,

m0
g

=
Q

k

i=1 zg(i). Define a map ⌧ such that ⌧ : yi,j 7! zj if i is odd, and ⌧ : yi,j 7! 1

for even i. In other words, ⌧(mfg) = m0
g
. Notice that,

rDet(Y) � F (Y)|⌧ = (�1)
k(k�1)

2

X

g2Ik,n

mfg |⌧

= (�1)
k(k�1)

2

X

g2Ik,n

m0
g

= (�1)
k(k�1)

2 S⇤
n,k

(Z).

Given a directed graph G on n vertices, we first construct an ABP for the

noncommutative graph polynomial CG over rationals. From the definition, it follows

that CG has a polynomial-size ABP. Notice that,

((rDet(Y) � F (Y)|⌧) � CG(Z))(
¯
1) = S⇤

n,k
(Z) � CG(Z)(

¯
1)

counts the number of directed k-paths in the graph G, and hence evaluating this

term is #W[1]-hard. Let us modify the ABP for graph polynomial CG(Z) by

replacing each edge labeled by zj at ith layer by two edges where the first edge is

labeled by y2i�1,j and second one is labeled by y2i,n+j. Let C 0
G
(Y) is the new

polynomial computed by the ABP. Notice that, each monomial of the modified

graph polynomial looks like
Q2k

i=1 yi,f(i) for some f : [2k] 7! [2n]. More importantly,

for each k-path vi1vi2 . . . vik , if g 2 Ik,n is the corresponding injection, then
Q

k

i=1 zg(i)

is converted to
Q2k

i=1 yi,fg(i) for fg 2 S. Notice that, (rDet(Y) � F (Y)|⌧) � CG(Z)

= (rDet(Y) � F (Y) � C 0
G
(Y))|⌧ and hence, evaluating (rDet(Y) � F (Y) � C 0

G
(Y))(

¯
1)

is #W[1]-hard.

Now, assume to the contrary, we have an FPT algorithm A to evaluate rDet(Y)

over matrix inputs. As, C 0
G
(Y) and F (Y) are computed by ABPs, we obtain an

ABP B0 computing C 0
G
� F (Y). From ABP B0, we construct the t⇥ t transition

130

matrices M1,1, . . . ,M2k,2n where t is the size of the ABP B0. From Lemma 7 we

know that, we are interested in computing rDet(Y) over the matrix tuple

(M1,1, . . . ,M2k,2n) which is same as invoking the algorithm A on the 2k ⇥ 2n matrix

A: ai,j = Mi,j. By a simple reduction we get a similar hardness over n✏
⇥ n✏

dimensional matrix algebras for any fixed ✏ > 0.

6.3.1 Computing over Small Dimensional Algebras

Finally, in contrast to the above hardness result, we show that there are simple

algorithms of run time O⇤(2kr2k) to evaluate the rectangular permanent and the

rectangular determinant of size k ⇥ n over r ⇥ r matrix algebras. Thus, over

constant-dimensional matrix algebras they are fixed-parameter tractable.

Theorem 24. Let F be any field and A be an r dimensional algebra over F with

basis e1, e2, . . . , er. Let {Aij}1ik

1jn

be a k ⇥ n matrix with Aij 2 A. Then rPer(A)

and rDet(A) can be computed in deterministic O⇤(2krk) time.

Proof. We present the proof for the rectangular permanent. The proof for the

rectangular determinant is identical. The proof follows easily from expressing each

entry Ai,j on the standard basis and then rearranging terms. Let e1, e2, . . . , er be

the standard basis for A over F. First we note that,

rPer(A) =
X

f2Ik,n

kY

i=1

Aif(i)

=
X

f2Ik,n

kY

i=1

rX

`=1

A(`)
if(i)e`

=
X

f2Ik,n

X

(t1,t2,...,tk)2[r]k

kY

i=1

A(ti)
if(i)

kY

i=1

eti

=
X

(t1,t2,...,tk)2[r]k

0

@
X

f2Ik,n

kY

i=1

A(ti)
if(i)

1

A
kY

i=1

eti .

(6.1)

131

Now we observe that

X

f2Ik,n

kY

i=1

A(ti)
if(i) = rPer(A(t1,t2,...,tk)),

where A(t1,t2,...,tk) is the k ⇥ n matrix defined as A(t1,t2,...,tk)
ij

= A(ti)
ij

. Thus we have

rPer(A) =
X

(t1,t2,...,tk)2[r]k
rPer(A(t1,t2,...,tk))

kY

i=1

eti .(6.2)

For a fixed (t1, t2, . . . , tk) 2 [r]k the value rPer(A(t1,t2,...,tk)) can be computed in

O⇤(2k) time using the rectangular permanent algorithm [WW13]. Now we can

compute rPer(A) by computing rk many such rectangular permanents and putting

them together according to equation 6.2. This gives a deterministic O⇤(2krk) time

algorithm for computing rPer(A).

As a direct corollary, we get the following.

Corollary 8. Let F be any field and let A be a k ⇥ n matrix with Aij 2 Matr(F).

Then rPer(A) and rDet(A) can be computed in O⇤(2kr2k) time.

Conclusion

In this chapter, we have presented the construction of explicit algebraic branching

programs for the noncommutative symmetrized elementary symmetric polynomial,

the noncommutative rectangular permanent polynomial, and the commutative

rectangular determinant polynomial. Additionally, we have given an explicit

algebraic branching program for the noncommutative square determinant

polynomial. The constructions are essentially optimal, in the sense of the lower

bound result of Nisan [Nis91]. We have also shown that evaluating the rectangular

determinant polynomial over matrix algebras is #W[1]-hard.

132

This chapter opens further avenues of research. A very interesting problem is to

tightly classify the complexity of computing the commutative rectangular k ⇥ n

determinant polynomial. Is it computable in poly(n, k) time? If not, can one show a

complexity-theoretic the hardness of evaluating the commutative determinant

polynomial? We feel that the main obstacle is interpreting the rectangular

determinant computation combinatorially. Another open question is whether or not

there is an explicit algebraic branching program for the noncommutative rectangular

determinant of size O⇤(nck) for some c < 1, similar to our construction for the

noncommutative rectangular permanent.

133

134

Chapter 7

Conclusion

In this chapter, we summarize the main results of the thesis. We also recapitulate

the main technical ideas involved; we hope these can be useful for further research

on the topics studied. Finally, we list some open problems arising from the thesis.

The results presented in the thesis revolve around two algorithmic problems:

rational identity testing and multilinear monomial detection. These problems are

well-motivated and well-studied in recent years. For both problems, tools from

algebraic complexity theory have proven useful in algorithms.

Rational Identity Testing

As already mentioned, rational identity testing (RIT) problem is to determine if a

given noncommutative rational formula computes the zero function in the free

skew-field. The problem is in deterministic polynomial time in the white-box

model [GGOW16, IQS18] and in randomized polynomial time in the black-box

model [DM17]. The main open problems are (a) to derandomize the black-box RIT

algorithm, and (b) to obtain white-box RIT for more general models than formulas.

In Chapter 3 and Chapter 4, we have explored some restricted models and have

135

obtained e�cient RIT algorithms.

• In Chapter 3, we consider two generalizations of noncommutative ABPs: one

that allows inversion at the top (meaning the output), the other that allows

inversions at the bottom (i.e. each edge label of the ABP is either an a�ne

linear form or the inverse of an a�ne linear form). We obtain deterministic

polynomial-time algorithms in white-box and a deterministic

quasi-polynomial-time algorithm in black-box for these models. The main

contribution is to explore the connection between RIT and algebraic automata

theory to obtain e�cient black-box algorithms.

• In Chapter 4, we consider a special case of noncommutative rational circuits of

inversion height one that allows inverses only at the bottom-most layer

computing a free group algebra function. We obtain a randomized polynomial

(in the maximum length of a word in the expression) time algorithm for this

problem. Moreover, we generalize the known identity testing results for

noncommutative arithmetic circuits[AJMR17, BW05].

Open Problems: Several questions remain open.

1. Can the connection to algebraic automata theory lead to a deterministic

black-box quasi-polynomial time algorithm for rational identity testing of all

noncommutative rational formulas? Recall that, for polynomial identity

testing of noncommutative formula, we have a deterministic black-box

quasi-polynomial time algorithm due to Forbes and Shpilka [FS13].

Connections between algebraic automata and rational functions in the free

skew field have been studied by Volčič [Vol18] motivated by linear systems and

control.

2. Can we obtain deterministic rational identity testing algorithms for models

136

stronger than rational formulas?

3. As already mentioned in Chapter 4, an interesting problem is to tighten the

bound on the minimum degree of a free group algebra identity for matrix

algebras.

Multilinear Monomial Detection

Recall that, given an arithmetic circuit computing a polynomial of degree-k as input,

the multilinear monomial detection problem (k -MMD) is to check whether an input

polynomial (by a circuit or ABP) has a multilinear monomial with a nonzero

coe�cient. This problem is known to be important in parameterized complexity as

many graph problems, such as finding the longest path, matching, dominating set

etc., are reducible to it. The counting version multilinear monomial counting

((k,n)-MLC) is to compute the sum of the coe�cients of all the multilinear terms in

the polynomial.

• An open problem in this area was to improve the trivial O(nk) time

exhaustive search algorithm for (k,n)-MLC. In Chapter 5, we solved this

problem by obtaining a O(nk/2+c log k) time deterministic algorithm that works

over Q and any finite field. We also studied the k -MMD problem for general

arithmetic circuits. Over rationals, Brand et al. [BDH18] obtained a

4.32k · poly(n) time algorithm for it that requires exponential (in k) space. In

Chapter 5, we have presented an algorithm with the same running time that

works over finite fields also and requires only polynomial space.

We obtain these upper bounds by e�ciently computing scaled Hadamard

product (or the apolar inner product) of two commutative polynomials. Our

main technical contribution is to introduce a new technique, symmetrization

in order to compute this.

137

• In Chapter 6, we have shown ABP constructions for the noncommutative

permanent and the noncommutative determinant with some related

polynomials. Our results show that the complexity of polynomials of

exponential ABP complexity can be explored further in the context of

parameterized complexity.

Open Problems: The most interesting open problem here is the following: Is

there a deterministic 2k · poly(n) time algorithm for the k -MMD problem when the

input n-variate polynomial is monotone and it is given by an ABP? A positive

answer will solve the long-standing open problem of deciding whether a graph of size

n has a path of length k in deterministic O⇤(2k) time. From our work, it seems that

a first step would be to find a monotone weakly equivalent elementary symmetric

polynomial such that the corresponding noncommutative symmetrized polynomial is

computable by an ABP of size 2k · poly(n).

Overall this thesis makes some progress in our understanding of the power of

noncommutative algebraic complexity. We believe that connections between

algebraic automata theory and algebraic complexity merits further study. The

symmetrization technique needs to be explored further.

138

Bibliography

[ACDM19a] Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha

Mukhopadhyay. E�cient black-box identity testing for free group

algebras. In Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques, APPROX/RANDOM 2019,

September 20-22, 2019, Massachusetts Institute of Technology,

Cambridge, MA, USA, pages 57:1–57:16, 2019.

[ACDM19b] Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha

Mukhopadhyay. Fast exact algorithms using hadamard product of

polynomials. In Arkadev Chattopadhyay and Paul Gastin, editors,

39th IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science, FSTTCS 2019,

December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages

9:1–9:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2019.

[ACDM19c] Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha

Mukhopadhyay. On explicit branching programs for the rectangular

determinant and permanent polynomials. In Pinyan Lu and Guochuan

Zhang, editors, 30th International Symposium on Algorithms and

Computation, ISAAC 2019, December 8-11, 2019, Shanghai University

of Finance and Economics, Shanghai, China, volume 149 of LIPIcs,

139

pages 38:1–38:13. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,

2019.

[ACDM20a] Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha

Mukhopadhyay. A Special Case of Rational Identity Testing and the

Brešar-Klep Theorem. In Javier Esparza and Daniel Krá̌l, editors, 45th

International Symposium on Mathematical Foundations of Computer

Science (MFCS 2020), volume 170 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 10:1–10:14, Dagstuhl, Germany, 2020.

Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[ACDM20b] Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha

Mukhopadhyay. On explicit branching programs for the rectangular

determinant and permanent polynomials. Chic. J. Theor. Comput.

Sci., 2020, 2020.

[ACDM22] Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha

Mukhopadhyay. Fast exact algorithms using hadamard product of

polynomials. Algorithmica, 84(2):436–463, 2022.

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In

Proceedings of the Third Annual ACM Symposium on Theory of

Computing. In: Sarukkai S., Sen S. (eds) FSTTCS 2005: Foundations

of Software Technology and Theoretical Computer Science. FSTTCS

2005, 2005.

[AJMR17] Vikraman Arvind, Pushkar S. Joglekar, Partha Mukhopadhyay, and

S. Raja. Randomized polynomial time identity testing for

noncommutative circuits. In Proceedings of the 49th Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,

QC, Canada, June 19-23, 2017, pages 831–841, 2017.

140

[AJS09] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan.

Arithmetic circuits and the Hadamard product of polynomials. In

IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009,

IIT Kanpur, India, pages 25–36, 2009.

[AL50] A. S. Amitsur and J. Levitzki. Minimal identities for algebras.

Proceedings of the American Mathematical Society, 1(4):449–463, 1950.

[Ami66] S.A Amitsur. Rational identities and applications to algebra and

geometry. Journal of Algebra, 3(3):304 – 359, 1966.

[AMS10] Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan.

New results on noncommutative and commutative polynomial identity

testing. Computational Complexity, 19(4):521–558, 2010.

[AS10] Vikraman Arvind and Srikanth Srinivasan. On the hardness of the

noncommutative determinant. In Proceedings of the 42nd ACM

Symposium on Theory of Computing, STOC 2010, Cambridge,

Massachusetts, USA, 5-8 June 2010, pages 677–686, 2010.

[AS18] Vikraman Arvind and Srikanth Srinivasan. On the hardness of the

noncommutative determinant. Computational Complexity, 27(1):1–29,

2018.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM,

42(4):844–856, 1995.

[BBB+00] Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal

Kushilevitz, and Stefano Varricchio. Learning functions represented as

multiplicity automata. J. ACM, 47(3):506–530, 2000.

141

[BDH18] Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding.

In Proceedings of the 50th Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2018, Los Angeles, CA, USA, June

25-29, 2018, pages 151–164, 2018.

[Ber76] George M Bergman. Rational relations and rational identities in

division rings. Journal of Algebra, 43(1):252 – 266, 1976.

[BHKK09] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto.

Counting paths and packings in halves. In Amos Fiat and Peter

Sanders, editors, Algorithms - ESA 2009, pages 578–586, Berlin,

Heidelberg, 2009. Springer Berlin Heidelberg.

[BHKK10] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto.

Evaluation of permanents in rings and semirings. Inf. Process. Lett.,

110(20):867–870, 2010.

[BK08] Matej Bresar and Igor Klep. Values of noncommutative polynomials,

Lie skew-ideals and the Tracial Nullstellensatz. Mathematical Research

Letters, 2008.

[Blä15] Markus Bläser. Noncommutativity makes determinants hard.

Information and Computation, 243:133 – 144, 2015. 40th International

Colloquium on Automata, Languages and Programming (ICALP

2013).

[BP21] Cornelius Brand and Kevin Pratt. Parameterized applications of

symbolic di↵erentiation of (totally) multilinear polynomials. In Nikhil

Bansal, Emanuela Merelli, and James Worrell, editors, 48th

International Colloquium on Automata, Languages, and Programming,

ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual

142

Conference), volume 198 of LIPIcs, pages 38:1–38:19. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2021.

[BR11] J. Berstel and C. Reutenauer. Noncommutative Rational Series with

Applications. Encyclopedia of Mathematics and its Applications.

Cambridge University Press, 2011.

[BS83] Walter Baur and Volker Strassen. The complexity of partial

derivatives. Theor. Comput. Sci., 22:317–330, 1983.

[BW05] Andrej Bogdanov and Hoeteck Wee. More on noncommutative

polynomial identity testing. In 20th Annual IEEE Conference on

Computational Complexity (CCC 2005), 11-15 June 2005, San Jose,

CA, USA, pages 92–99, 2005.

[CHSS11] Steve Chien, Prahladh Harsha, Alistair Sinclair, and Srikanth

Srinivasan. Almost settling the hardness of noncommutative

determinant. In Proceedings of the 43rd ACM Symposium on Theory

of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages

499–508, 2011.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In

Proceedings of the Third Annual ACM Symposium on Theory of

Computing, STOC ’71, page 151–158, New York, NY, USA, 1971.

Association for Computing Machinery.

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of

Parameterized Complexity. Texts in Computer Science. Springer, 2013.

[Die43] Jean Dieudonné. Les déterminants sur un corps non commutatif.

Bulletin de la Société Mathématique de France, 71:27–45, 1943.

143

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on

algebraic program testing. Information Processing Letters, 7(4):193 –

195, 1978.

[DM17] Harm Derksen and Visu Makam. Polynomial degree bounds for matrix

semi-invariants. Advances in Mathematics, 310:44–63, 2017.

[DM18] Harm Derksen and Visu Makam. On non-commutative rank and

tensor rank. Linear and Multilinear Algebra, 66(6):1069–1084, 2018.

[Eil74] Samuel Eilenberg. Automata, Languages, and Machines (Vol A). Pure

and Applied Mathematics. Academic Press, 1974.

[Fis94] Ismor Fischer. Sums of like powers of multivariate linear forms.

Mathematics Magazine, 67(1):59–61, 1994.

[For14] Michael Andrew Forbes. Polynomial identity testing of read-once

oblivious algebraic branching programs. 2014.

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity

testing of non-commutative and read-once oblivious algebraic

branching programs. In 54th Annual IEEE Symposium on Foundations

of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA,

USA, pages 243–252, 2013.

[GG81] CD Godsil and I Gutman. On the matching polynomial of a graph,

algebraic methods in graph theory I-II, 1981.

[GGOW16] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi

Wigderson. A deterministic polynomial time algorithm for

non-commutative rational identity testing. 2016 IEEE 57th Annual

Symposium on Foundations of Computer Science (FOCS), pages

109–117, 2016.

144

[GGRL05] Israel Gelfand, Sergei Gelfand, Vladimir Retakh, and Robert Lee

Wilson. Quasideterminants. Advances in Mathematics, 193(1):56 – 141,

2005.

[Gre11] Bruno Grenet. An Upper Bound for the Permanent versus

Determinant Problem. Manuscript, 2011.

[Hua49] Loo-Keng Hua. Some properties of a sfield. Proceedings of the National

Academy of Sciences of the United States of America, 35(9):533–537,

1949.

[HW15] Pavel Hrubeš and Avi Wigderson. Non-commutative arithmetic

circuits with division. Theory of Computing, 11(14):357–393, 2015.

[HWZ08] Falk Hü↵ner, Sebastian Wernicke, and Thomas Zichner. Algorithm

engineering for color-coding with applications to signaling pathway

detection. Algorithmica, 52(2):114–132, 2008.

[IQS18] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam.

Constructive non-commutative rank computation is in deterministic

polynomial time. computational complexity, 27(4):561–593, Dec 2018.

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time

approximation algorithm for the permanent of a matrix with

nonnegative entries. J. ACM, 51(4):671–697, July 2004.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing

polynomial identity tests means proving circuit lower bounds. Comput.

Complex., 13(1/2):1–46, December 2004.

[Kou08] Ioannis Koutis. Faster algebraic algorithms for path and packing

problems. In Automata, Languages and Programming, 35th

International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,

145

2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity,

and Games, pages 575–586, 2008.

[KS01] Adam R. Klivans and Daniel Spielman. Randomness e�cient identity

testing of multivariate polynomials. In Proceedings of the Thirty-third

Annual ACM Symposium on Theory of Computing, STOC ’01, pages

216–223, New York, NY, USA, 2001. ACM.

[KW16] Ioannis Koutis and Ryan Williams. Limits and applications of group

algebras for parameterized problems. ACM Trans. Algorithms,

12(3):31:1–31:18, 2016.

[Lee15] Hwangrae Lee. Power sum decompositions of elementary symmetric

polynomials, volume 492, 2015. Linear Algebra and its Applications.

[Lev73] L. A. Levin. Universal sequential search problems. In Proceedings of

the Third Annual ACM Symposium on Theory of Computing, pages

265–266. Probl. Peredachi Inf., 1973.

[LS12] Sylvain Lombardy and Jacques Sakarovitch. The removal of weighted

✏-transitions. In Nelma Moreira and Rogério Reis, editors,

Implementation and Application of Automata, pages 345–352, Berlin,

Heidelberg, 2012. Springer Berlin Heidelberg.

[LZ09] Tsiu-Kwen Lee and Yiqiang Zhou. Right ideals generated by an

idempotent of finite rank. Linear Algebra and its Applications,

431:2118–2126, 11 2009.

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics,

algorithms, and complexity. Chicago J. Theor. Comput. Sci., 1997,

1997.

146

[Nis91] Noam Nisan. Lower bounds for non-commutative computation

(extended abstract). In Proceedings of the 23rd Annual ACM

Symposium on Theory of Computing, May 5-8, 1991, New Orleans,

Louisiana, USA, pages 410–418, 1991.

[NSS95] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters

and near-optimal derandomization. In 36th Annual Symposium on

Foundations of Computer Science, Milwaukee, Wisconsin, 23-25

October 1995, pages 182–191, 1995.

[Pra18] Kevin Pratt. Faster algorithms via waring decompositions. CoRR,

abs/1807.06194, 2018.

[Pra19] Kevin Pratt. Waring rank, parameterized and exact algorithms. In

David Zuckerman, editor, 60th IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,

USA, November 9-12, 2019, pages 806–823. IEEE Computer Society,

2019.

[Row80] Louis Halle Rowen. Polynomial identities in ring theory. Pure and

Applied Mathematics. Academic Press, 1980.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing

in non-commutative models. Computational Complexity, 14(1):1–19,

2005.

[Rys63] H.J. Ryser. Combinatorial mathematics. Carus mathematical

monographs. Mathematical Association of America; distributed by

Wiley [New York], 1963.

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit

complexity. 2015.

https://github.com/dasarpmar/lowerbounds-survey/.

147

[Sax08] Nitin Saxena. Diagonal circuit identity testing and lower bounds. In

Automata, Languages and Programming, 35th International

Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,

Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and

Games, pages 60–71, 2008.

[Sch61] M.P. Schützenberger. On the definition of a family of automata.

Information and Control, 4(2):245 – 270, 1961.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithm for verification of

polynomial identities. J. ACM., 27(4):701–717, 1980.

[Str73] Volker Strassen. Vermeidung von divisionen. Journal für die reine und

angewandte Mathematik, 264:184–202, 1973.

[SY10] Amir Shpilka and Amir Yehudayo↵. Arithmetic circuits: A survey of

recent results and open questions. Foundations and Trends in

Theoretical Computer Science, 5(3-4):207–388, 2010.

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of

the 11h Annual ACM Symposium on Theory of Computing, April 30 -

May 2, 1979, Atlanta, Georgia, USA, pages 249–261, 1979.

[Vol18] Jurij Volčič. Matrix coe�cient realization theory of noncommutative

rational functions. Journal of Algebra, 499:397–437, 04 2018.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Racko↵.

Fast parallel computation of polynomials using few processors. SIAM

J. Comput., 12(4):641–644, 1983.

[Wer05] Dirk Werner. Funktionalanalysis (in German). Springer Verlag, 2005.

[Wil09] Ryan Williams. Finding paths of length k in O*(2k) time. Inf. Process.

Lett., 109(6):315–318, 2009.

148

[Wil14a] Ryan Williams. Algorithms for circuits and circuits for algorithms. In

IEEE 29th Conference on Computational Complexity, CCC 2014,

Vancouver, BC, Canada, June 11-13, 2014, pages 248–261, 2014.

[Wil14b] Ryan Williams. The polynomial method in circuit complexity applied

to algorithm design (invited talk). In 34th International Conference on

Foundation of Software Technology and Theoretical Computer Science,

FSTTCS 2014, December 15-17, 2014, New Delhi, India, pages 47–60,

2014.

[WW13] Virginia Vassilevska Williams and Ryan Williams. Finding,

minimizing, and counting weighted subgraphs. SIAM J. Comput.,

42(3):831–854, 2013.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. of

the Int. Sym. on Symbolic and Algebraic Computation, pages 216–226,

1979.

[Šp12] Špela Špenko. On the image of a noncommutative polynomial. Journal

of Algebra, 377, 12 2012.

149

