
On Explicit Branching Programs for the
Rectangular Determinant and Permanent
Polynomials
V. Arvind
Institute of Mathematical Sciences (HBNI), Chennai, India
arvind@imsc.res.in

Abhranil Chatterjee
Institute of Mathematical Sciences (HBNI), Chennai, India
abhranilc@imsc.res.in

Rajit Datta
Chennai Mathematical Institute, Chennai, India
rajit@cmi.ac.in

Partha Mukhopadhyay
Chennai Mathematical Institute, Chennai, India
partham@cmi.ac.in

Abstract
We study the arithmetic circuit complexity of some well-known family of polynomials through
the lens of parameterized complexity. Our main focus is on the construction of explicit algebraic
branching programs (ABP) for determinant and permanent polynomials of the rectangular symbolic
matrix in both commutative and noncommutative settings. The main results are:

We show an explicit O∗(
(

n
↓k/2

)
)-size ABP construction for noncommutative permanent polynomial

of k× n symbolic matrix. We obtain this via an explicit ABP construction of size O∗(
(

n
↓k/2

)
) for

S∗n,k, noncommutative symmetrized version of the elementary symmetric polynomial Sn,k.

We obtain an explicit O∗(2k)-size ABP construction for the commutative rectangular determinant
polynomial of the k × n symbolic matrix.

In contrast, we show that evaluating the rectangular noncommutative determinant over rational
matrices is #W[1]-hard.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation

Keywords and phrases Determinant, Permanent, Parameterized Complexity, Branching Programs

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.38

1 Introduction

The complexity of arithmetic computations is usually studied in the model of arithmetic
circuits and its various restrictions. An arithmetic circuit is a directed acyclic graph with
each indegree-0 node (called an input gate) labeled by either a variable in {x1, x2, . . . , xn}
or a scalar from the field F, and all other nodes (called gates) labeled as either + or ×
gate. At a special node (designated the output gate), the circuit computes a multivariate
polynomial in F[x1, x2, . . . , xn]. Usually we use the notation F[X] to denote the polynomial
ring F[x1, x2, . . . , xn].

© V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 38; pp. 38:1–38:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arvind@imsc.res.in
mailto:abhranilc@imsc.res.in
mailto:rajit@cmi.ac.in
mailto:partham@cmi.ac.in
https://doi.org/10.4230/LIPIcs.ISAAC.2019.38
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 On Explicit Branching Programs

Arithmetic computations are also considered in the noncommutative setting. The free non-
commutative ring F〈y1, y2, . . . , yn〉 is usually denoted by F〈Y〉1. In the ring F〈Y〉, monomials
are words in Y∗ and polynomials in F〈Y〉 are F-linear combinations of words. We define
noncommutative arithmetic circuits essentially as their commutative counterparts. The only
difference is that at each product gate in a noncommutative circuit there is a prescribed left
to right ordering of its inputs.

A more restricted model than arithmetic circuits are algebraic branching programs.
An algebraic branching program (ABP) is a directed acyclic graph with one in-degree-0
vertex called source, and one out-degree-0 vertex called sink. The vertex set of the graph is
partitioned into layers 0, 1, . . . , `, with directed edges only only between adjacent layers (i to
i+ 1). The source and the sink are at layers zero and ` respectively. Each edge is labeled
by a linear form over variables x1, x2, . . . , xn. The polynomial computed by the ABP is the
sum over all source-to-sink directed paths of the product of linear forms that label the edges
of the path. An ABP is homogeneous if all edge labels are homogeneous linear forms. ABPs
can be defined in both commutative and noncommutative settings.

The main purpose of the current paper is to present new arithmetic complexity upper
bound results, in the form of “optimal” algebraic branching programs, for some important
polynomials in both the commutative and noncommutative domains. These results are
motivated by our recent work on an algebraic approach to designing efficient parameterized
algorithms for various combinatorial problems [1].

We now proceed to define the polynomials and explain the results obtained.

The Elementary Symmetric Polynomial
We first recall the definition of kth elementary symmetric polynomial Sn,k ∈ F[X], over the n
variables X = {x1, x2, . . . , xn},

Sn,k(X) =
∑

S⊆[n]:|S|=k

∏
i∈S

xi.

It is well-known that Sn,k(X) can be computed by an algebraic branching program of size
O(nk). In this paper, we consider the noncommutative symmetrized version S∗n,k, in the ring
F〈Y〉, defined as:

S∗n,k(Y) =
∑

T⊆[n]:|T |=k

∑
σ∈Sk

∏
i∈T

yσ(i).

The complexity of the polynomial S∗n,k is first considered by Nisan in his seminal work in
noncommutative computation [9]. Nisan shows that any ABP for S∗n,k is of size Ω(

(
n
↓k/2

)
) 2.

Furthermore, Nisan also shows the existence of ABP of size O(
(
n
↓k/2

)
) for S∗n,k. However,

it is not clear how to construct such an ABP in time O(
(
n
↓k/2

)
). Note that an ABP of size

O∗(nk) for S∗n,k can be directly constructed in O∗(nk) time by opening up the expression
completely 3. The main upper bound question is whether we can achieve any constant factor
saving of the parameter k in terms of size and run time of the construction. In this paper,
we give such an explicit construction. Note that Nisan’s result also rules out any FPT(k)-size
ABP for S∗n,k. That also justifies the problem from an exact computation point of view.

1 Throughout the paper, we use X to denote the set of commuting variables and Y,Z to denote the set of
noncommuting variables.

2 We use
(

n
↓r

)
to denote

∑r

i=0

(
n
i

)
.

3 In this paper we use the notation O∗(·) freely to suppress the terms asymptotically smaller than the
main term.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:3

Rectangular Permanent and Rectangular Determinant Polynomial
The next polynomial of interest in the current paper is rectangular permanent polynomial.
Given a k × n rectangular matrix X = (xi,j)1≤i≤k,1≤j≤n of commuting variables and a
k × n rectangular matrix Y = (yi,j)1≤i≤k,1≤j≤n of noncommuting variables, the rectangular
permanent polynomial in commutative and noncommutative domains are defined as follows

rPer(X) =
∑
σ∈Ik,n

k∏
i=1

xi,σ(i), rPer(Y) =
∑
σ∈Ik,n

k∏
i=1

yi,σ(i).

Here, Ik,n is the set of all injections from [k] → [n]. An alternative view is that
rPer(X) =

∑
S⊂[n]:|S|=k Per(XS) where XS is the k × k submatrix where the columns are

indexed by the set S. Of course, such a polynomial can be computed in time O∗(nk)
using a circuit of similar size, the main interesting issue is to understand whether the
dependence on the parameter k can be improved. It is implicit in the work of Vassilevska and
Williams [10] that the rPer(X) polynomial in the commutative setting can be computed by
an algebraic branching program of size O∗(2k). This problem originates from its connection
with combinatorial problems studied in the context of exact algorithm design [10]. In the
noncommutative setting, set-multilinearizing S∗n,k(Y) polynomial (i.e. replacing each yi at
position j by yj,i), we obtain rPer(Y) where Y is a k × n symbolic matrix of noncommuting
variables. Using this connection with the explicit construction of S∗n,k(Y) polynomial,
we provide an ABP for rPer(Y) in the noncommutative setting of size O∗(

(
n
↓k/2

)
). The

construction time is also similar.
As in the usual commutative case, the noncommutative determinant polynomial of a

symbolic matrix Y = (yi,j)1≤i,j≤k is defined as follows (the variables in the monomials are
ordered from left to right):

Det(Y) =
∑
σ∈Sk

sgn(σ) y1,σ(1) . . . yk,σ(k).

Nisan [9] has also shown that any algebraic branching program for the noncommutative
determinant of a k × k symbolic matrix must be of size Ω(2k). In this paper we give an
explicit construction of such an ABP in time O∗(2k). Here too, the main point is that Nisan
has also shown that the lower bound is tight, but we provide an explicit construction.

Moreover, motivated by the result of Vassilevska and Williams [10], we study the com-
plexity of the rectangular determinant polynomial (in commutative domain) defined as
follows.

rDet(X) =
∑

S∈([n]
k)

Det(XS).

We prove that the rectangular determinant polynomial can be computed using O∗(2k)-size
explicit ABP.

Finally, we consider the problem of evaluating the noncommutative rectangular determ-
inant over matrix algebras and show that it is #W[1]-hard for polynomial dimensional
matrices. Hence the noncommutative rectangular determinant is unlikely to have an explicit
O∗(no(k))-size ABP. Recently, we have shown the #W[1]-hardness of computing noncommut-
ative rectangular permanents over poly-dimensional rational matrices [1]. We note that the
noncommutative n× n determinant over matrix algebras is well-studied, and computing it
remains #P-hard even over 2× 2 rational matrices [3, 7, 6]. Our proof technique is based on

ISAAC 2019

38:4 On Explicit Branching Programs

Hadamard product of noncommutative polynomials which is also used in [3]. However, the
crucial difference is that, to show the #P-hardness of noncommutative determinant, authors
in [3] reduce the evaluation of commutative permanent to this case; whereas, #W[1]-the
hardness of noncommutative rectangular determinant seems more challenging as commutative
rectangular permanent is in FPT. In contrast, we show that the rectangular determinant (and
rectangular permanent), whose entries are r × r matrices over any field, can be computed in
time O∗(2kr2k).

Our Results
We first formally define what we mean by explicit circuit upper bounds.

I Definition 1 (Explicit Circuit Upper Bound). A family {fn}n>0 of degree-k polynomials in
the commutative ring F[x1, x2, . . . , xn] (or the noncommutative ring F〈y1, y2, . . . , yn〉) has
q(n, k)-explicit upper bounds if there is an O∗(q(n, k)) time-bounded algorithm A that on
input 〈0n, k〉 outputs a circuit Cn of size O∗(q(n, k)) computing fn.

We show the following explicit upper bound results.

I Theorem 2.
1. The family of symmetrized elementary polynomials {S∗n,k(Y)}n>0 has

(
n
↓k/2

)
-explicit ABPs

over any field.
2. The noncommutative rectangular permanent family {rPer(Y)}n>0, where Y is a k × n

symbolic matrix of variables has
(
n
↓k/2

)
-explicit ABPs.

I Remark 3. We note here that there is an algorithm of run time O∗(
(
n
↓k/2

)
) for computing

the rectangular permanent over rings and semirings [5]. Our contribution in Theorem 2.2 is
that we obtain an

(
n
↓k/2

)
-explicit ABP for it.

I Theorem 4.
1. The family of noncommutative determinants {Det(Y)}k>0 has 2k-explicit ABPs over any

field.
2. There is a family {fn} of noncommutative degree-k polynomials fn such that fn has the

same support as S∗n,k, and it has 2k-explicit ABPs. This result holds over any field that
has at least n distinct elements.

3. The commutative rectangular determinant family {rDet(X)}k>0, where X is a k×n matrix
of variables has 2k-explicit ABPs.

We stress here that the constructive aspect of the above upper bounds is new. The
existence of the ABPs claimed in the first two parts of Theorem 2 and the first part of
Theorem 4 follows from Nisan’s work [9] which shows a tight connection between optimal
ABP-size for some f ∈ F〈X〉 and ranks of the matrices Mr whose rows are labeled by degree
r monomials, columns by degree k − r monomials and the (m1,m2)th entry is the coefficient
of m1m2 in f .

Next we describe the parameterized hardness result for rectangular determinant polyno-
mial when we evaluate over matrix algebras.

I Theorem 5. For any fixed ε > 0, evaluating the k× n rectangular determinant polynomial
over nε × nε rational matrices is #W[1]-hard, treating k as fixed parameter.

However, we can easily design an algorithm of run time O∗(2kr2k) for computing the
rectangular permanent and determinant polynomials with r × r matrix entries over any field.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:5

Organization
The paper is organized as follows. In Section 2, we provide the necessary background. The
proofs of Theorem 2 and Theorem 4 are given in Section 3 and Section 4 repectively. We
prove Theorem 5 in Section 5.

2 Preliminaries

We provide some background results from noncommutative computation. Given a commut-
ative circuit C, we can naturally associate a noncommutative circuit Cnc by prescribing an
input order at each multiplication gate. This is captured in the following definition.

I Definition 6. Given a commutative circuit C computing a polynomial in F[x1, x2, ..., xn],
the noncommutative version of C, Cnc is the noncommutative circuit obtained from C by fixing
an ordering of the inputs to each product gate in C and replacing xi by the noncommuting
variable yi : 1 ≤ i ≤ n.

Let f ∈ F[X] be a homogenous degree-k polynomial computed by a circuit C, and let
f̂(Y) ∈ F〈Y〉 be the polynomial computed by Cnc. Let Xk denote the set of all degree-k
monomials over X. As usual, Yk denotes all degree-k noncommutative monomials (i.e., words)
over Y. Each monomial m ∈ Xk can appear as different noncommutative monomials m̂ in
f̂ . We use the notation m̂→ m to denote that m̂ ∈ Yk will be transformed to m ∈ Xk by
substituting xi for yi, 1 ≤ i ≤ n. Then, we observe the following, [m]f =

∑
m̂→m[m̂]f̂ .

For each monomial m̂ = yi1yi2 · · · yik , the permutation σ ∈ Sk maps m̂ to the monomial
m̂σ defined as m̂σ = yiσ(1)yiσ(2) · · · yiσ(k) . By linearity, f̂ =

∑
m̂∈Yk [m̂]f̂ · m̂ is mapped by σ

to the polynomial, f̂σ =
∑
m̂∈Yk [m̂]f̂ · m̂σ. This gives the following definition.

I Definition 7. The symmetrized polynomial of f , f∗ is degree-k homogeneous polynomial
f∗ =

∑
σ∈Sk f̂

σ.

Next, we recall the definition of Hadamard product of two polynomials.

I Definition 8. Given polynomials f, g, their Hadamard product is defined as

f ◦ g =
∑
m

([m]f · [m]g) ·m,

where [m]f denotes the coefficient of monomial m in f .

In the commutative setting, computing the Hadamard product is intractable in general.
This is readily seen as the Hadamard product of the determinant polynomial with itself
yields the permanent polynomial. However, in the noncommutative setting the Hadamard
product of two ABPs can be computed efficiently [2].

I Theorem 9 ([2]). Given a noncommutative ABP of size S′ for degree k polynomial
f ∈ F〈y1, y2, . . . , yn〉 and a noncommutative ABP of size S for another degree k polynomial
g ∈ F〈y1, y2, ..., yn〉, we can compute a noncommutative ABP of size SS′ for f ◦ g in
deterministic SS′ · poly(n, k) time.

Let C be a circuit and B an ABP computing homogeneous degree-k polynomials f, g ∈
F〈Y〉 respectively. Then their Hadamard product f ◦ g has a noncommutative circuit of
polynomially bounded size which can be computed efficiently [2].

Furthermore, if C is given by black-box access then f ◦ g(a1, a2, . . . , an) for ai ∈ F, 1 ≤
i ≤ n can be evaluated by evaluating C on matrices defined by the ABP B [3] as follows:
For each i ∈ [n], the transition matrix Mi ∈Ms(F) are computed from the noncommutative

ISAAC 2019

38:6 On Explicit Branching Programs

ABP B (which is of size s) that encode layers. We define Mi[k, `] = [xi]Lk,`, where Lk,` is
the linear form on the edge (k, `). Now to compute (f ◦ g)(a1, a2, . . . , an) where ai ∈ F for
each 1 ≤ i ≤ n, we compute C(a1M1, a2M2, . . . anMn). The value (f ◦ g)(a1, a2, . . . , an) is
the (1, s)th entry of the matrix f(a1M1, a2M2, . . . , anMn).

I Lemma 10 ([3]). Given a circuit C and a ABP B computing homogeneous noncommutative
polynomials f and g in F〈Y〉, the Hadamard product f ◦ g can be evaluated at any point
(a1, . . . , an) ∈ Fn by evaluating C(a1M1, . . . , anMn) where M1, . . . ,Mn are the transition
matrices of B, and the dimension of each Mi is the size of B.

3 The Proof of Theorem 2

In this section, we present the construction of explicit ABPs for S∗n,k(Y) and noncommutative
rPer(Y).

3.1 The construction of ABP for S∗
n,k(Y)

The construction of the ABP for S∗n,k(Y) is inspired by a inclusion-exclusion based dynamic
programming algorithm for the disjoint sum problem [4].

Proof of Theorem 2.1. Let us denote by F the family of subsets of [n] of size exactly k/2.
Let ↓F denote the family of subsets of [n] of size at most k/2. For a subset S ⊂ [n], we
define mS =

∏
j∈S yj . Let us define

fS =
∑

σ∈Sk/2

k/2∏
j=1

yiσ(j)

where S ∈ F and S = {i1, i2, . . . , ik/2}, otherwise for subsets S /∈ F , we define fS = 0. Note
that, for each S ∈ F , fS is the symmetrization of the monomial mS which we denote by m∗S
(notice Definition 7).

For each S ∈↓F , let us define f̂S =
∑
S⊆A fA where A ∈ F . We now show, using the

inclusion-exclusion principle, that we can express S∗n,k using an appropriate combination of
these symmetrized polynomials for different subsets.

I Lemma 11.

S∗n,k =
∑
S∈↓F

(−1)|S|f̂2
S .

Proof. Let us first note that, S∗n,k =
∑
A∈F

∑
B∈F [A ∩ B = ∅]fAfB, where we use [P] to

denote that the proposition P is true. By the inclusion-exclusion principle:

S∗n,k =
∑
A∈F

∑
B∈F

[A ∩B = ∅]fAfB

=
∑
A∈F

∑
B∈F

∑
S∈↓F

(−1)|S|[S ⊆ A ∩B]fAfB

=
∑
S∈↓F

(−1)|S|
∑
A∈F

∑
B∈F

[S ⊆ A][S ⊆ B]fAfB

=
∑
S∈↓F

(−1)|S|
(∑
A∈F

[S ⊆ A]fA

)2

=
∑
S∈↓F

(−1)|S|f̂2
S . J

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:7

Now we describe two ABPs where the first ABP simultaneously computes fA for each
A ∈ F and the second one simultaneously computes f̂S for each S ∈↓F .

I Lemma 12. There is an
(
n
↓k/2

)
-explicit multi-output ABP B1 that outputs the collection

{fA} for each A ∈ F .

Proof. First note that, m∗S =
∑
j∈Sm

∗
S\{j} ·yj . Now, the construction of the ABP is obvious.

It consists of (k/2 + 1) layers where layer ` ∈ {0, 1, . . . , k/2} has
(
n
`

)
many nodes indexed

by ` size subsets of [n]. In (`+ 1)th layer, the node indexed by S is connected to the nodes
S \ {j} in the previous layer with an edge label yj for each j ∈ S. Clearly, in the last layer,
the Sth sink node computes fS . J

I Lemma 13. There is an
(
n
↓k/2

)
-explicit multi-output ABP B2 that outputs the collection

{f̂S} for each S ∈↓F .

Proof. To construct such an ABP, we use ideas from [4]. We define f̂i,S =
∑
S⊆A fA where

S ⊆ A and A ∩ [i] = S ∩ [i]. Note that, f̂n,S = fS and f̂0,S = f̂S . From the definition, it is
clear that f̂i−1,S = f̂i,S + f̂i,S∪{i} if i /∈ S and f̂i−1,S = f̂i,S if i ∈ S. Hence, we can take a
copy of ABP B1 from Lemma 12, and then simultaneously compute f̂i,S for each S ∈↓F and
i ranging from n to 0. Clearly, the new ABP B2 consists of (n+ k/2 + 1) many layers and
at most

(
n
↓k/2

)
nodes at each layer. The number of edges in the ABP is also linear in the

number of nodes. J

Let f =
∑
m∈Y k [m]f ·m be a noncommutative polynomial of degree k in F〈Y 〉. The

reverse of f is defined as the polynomial

fR =
∑
m∈Y k

[m]f ·mR,

where mR is the reverse of the word m.

I Lemma 14 (Reversing an ABP). Suppose B is a multi-output ABP with r sink nodes where
the ith sink node computes fi ∈ F〈Y〉 for each i ∈ [r]. We can construct an ABP of twice the
size of B that computes the polynomial

∑r
i=1 fi · Li · fRi where Li are affine linear forms.

Proof. Suppose B has ` layers, then we construct an ABP of 2`+ 1 layers where the first `
layers are the copy of ABP B and the last ` layers are the “mirror image” of the ABP B,
call it BR. In the (`+ 1)th layer we connect the ith sink node of ABP B to the ith source
node of BR by an edge with edge label Li. Note that, BR has r source nodes and one sink
node and the polynomial computed between ith source node and sink is fRi . J

Now, applying the construction of Lemma 14 to the multi-output ABP B2 of Lemma 13
with LS = (−1)|S| we obtain an ABP that computes the polynomial

∑
S(−1)|S|f̂S · f̂RS . Since

f̂S is a symmetrized polynomial, we note that f̂RS = f̂S and using Lemma 11 we conclude
that this ABP computes S∗n,k. The ABP size is O(k

(
n
↓k/2

)
). J

3.2 The construction of ABP for rPer(Y)
Proof of Theorem 2.2. A

(
n
↓k/2

)
-explicit ABP for the rectangular permanent polynomial can

be obtained easily from the
(
n
↓k/2

)
-explicit ABP for S∗n,k(Y) by careful set-multilinearization.

This can be done by simply renaming the variables yi : 1 ≤ i ≤ n at the position 1 ≤ j ≤ k
by yj,i. J

ISAAC 2019

38:8 On Explicit Branching Programs

4 The Proof of Theorem 4

We divide the proof in three subsections.

4.1 A 2k-explicit ABP for k × k noncommutative determinant
In this section, we present an optimal explicit ABP construction for the noncommutative
determinant polynomial for the square symbolic matrix. .

Proof of Theorem 4.1. The ABP B has k + 1 layers with
(
k
`

)
nodes at the layer ` for each

0 ≤ ` ≤ k. The source of the ABP is labeled ∅ and the nodes in layer ` are labeled by the
distinct size ` subsets S ⊆ [k], 1 ≤ ` ≤ k, hence the sink is labeled [k]. From the node labeled
S in layer `, there are k − ` outgoing edges (S, S ∪ {j}), j ∈ [k] \ S.

Define the sign sgn(S, j) as sgn(S, j) = (−1)tj , where tj is the number of elements in S
larger than j. Equivalently, tj is the number of swaps required to insert j in the correct
position, treating S as a sorted list.

For noncommutative determinant polynomial, we connect the set S in the ith layer to
a set S ∪ {j} in the (i+ 1)th layer with the edge label sgn(S, j) · yi+1,j The source to sink
paths in this ABP are in 1-1 correspondence to the node labels on the paths which give
subset chains ∅ ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tk = [k] such that |Ti \ Ti−1| = 1 for all i ≤ k. Such
subset chains are clearly in 1-1 correspondence with permutations σ ∈ Sk listed as a sequence:
σ(1), σ(2), . . . , σ(k), where Ti = {σ(1), σ(2), . . . , σ(i)}. The following claim spells out the
connection between the sign sgn(σ) of σ and the sgn(S, j) function defined above.

B Claim 15. For each σ ∈ Sk and Ti = {σ(1), σ(2), . . . , σ(i)}, we have

sgn(σ) =
k∏
i=1

sgn(Ti−1, σ(i)).

Proof. We first note that sgn(σ) = (−1)t, if there are t transpositions (ri si), 1 ≤ i ≤ t such
that σ · (r1 s1) · (r2 s2) · · · (rt st) = 1. Equivalently, interpreting this as sorting the list
σ(1), σ(2), . . . , σ(k) by swaps (ri si), applying these t swaps will sort the list into 1, 2, . . . , k. As
already noted, sgn(Ti−1, σ(i)) = (−1)ti , where ti is the number of swaps required to insert σ(i)
in the correct position into the sorted order of Ti−1 (where σ(i) is initially placed to the right
of Ti−1). Hence,

∑k
i=1 ti is the total number of swaps required for this insertion sort procedure

to sort σ(1), σ(2), . . . , σ(k). It follows that
∏k
i=1 sgn(Ti−1, σ(i)) = (−1)

∑
i
ti = sgn(σ), which

proves the claim. C

The fact that the ABP computes the noncommutative determinant polynomial follows
directly from Claim 15 and the edge labels. J

4.2 A 2k-explicit ABP weakly equivalent to S∗
n,k

A polynomial f ∈ F[X] (resp. F〈Y〉) is said to be weakly equivalent to a polynomial g ∈ F[X]
(resp. F〈Y〉), if for each monomial m over X, [m]f = 0 if and only if [m]g = 0. For the
construction of an ABP computing a polynomial weakly equivalent to S∗n,k, we will suitably
modify the ABP construction described above.

Proof of Theorem 4.2. Let αi, 1 ≤ i ≤ n be distinct elements from F. For each j ∈ [k] \ S,
the edge (S, S ∪ {j}) is labeled by the linear form sgn(S, j) ·

∑n
i=1 α

j
iyi, where yi, 1 ≤ i ≤ n

are noncommuting variables. This gives an ABP B of size O∗(2k).

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:9

We show that the polynomial computed by ABP B is weakly equivalent to S∗n,k. Clearly,
B computes a homogeneous degree k polynomial in the variables yi, 1 ≤ i ≤ n. We determine
the coefficient of a monomial yi1yi2 · · · yik . As noted, each source to sink path in B corresponds
to a permutation σ ∈ Sk. Along that path the ABP compute the product of linear forms

sgn(σ)Lσ(1)Lσ(2) · · ·Lσ(k), where Lσ(q) =
n∑
i=1

α
σ(q)
i yi,

where the sign is given by the previous claim. The coefficient of monomial yi1yi2 · · · yik in the
above product is given by sgn(σ)

∏k
q=1 α

σ(q)
iq

. Thus, the coefficient of yi1yi2 · · · yik in the ABP
is given by

∑
σ∈Sk sgn(σ)

∏k
q=1 α

σ(q)
iq

, which is the determinant of the k × k Vandermonde
matrix whose qth column is (αiq , α2

iq
, . . . , αkiq)

T . Clearly, that determinant is non-zero if and
only if the monomial yi1yi2 · · · yik is multilinear. Clearly the proof works for any field that
contains at least n distinct elements. J

I Remark 16. A polynomial f ∈ F〈Y〉 is positively weakly equivalent to S∗n,k, if for each
multilinear monomial m ∈ Yk, [m]f > 0. In the above proof, let g be the polynomial
computed by ABP B that is weakly equivalent to S∗n,k. Clearly, f = g ◦ g is positively weakly
equivalent to S∗n,k, and f has a 4k-explicit ABP, since B is 2k-explicit. This follows from
Theorem 9. We leave open the problem of finding a 2k-explicit ABP for some polynomial
that is positively weakly equivalent to S∗n,k. Such an explicit construction would imply a
deterministic O∗(2k) time algorithm for k-path which is a long-standing open problem [8].

4.3 A 2k-explicit ABP for k × n commutative rectangular determinant
In this section, we present the ABP construction for commutative determinant polynomial
for k × n symbolic matrix.

Proof of Theorem 4.3. We adapt the ABP presented in Subsection 4.1. The main difference
is that, for the edge (S, S∪{j}), the linear form is sgn(S, j)·(

∑n
i=1 xj,izi), where zi : 1 ≤ i ≤ n

are fresh noncommuting variables, and the xj,i : 1 ≤ j ≤ k, 1 ≤ i ≤ n are commuting variables.
Then with a similar argument as before, the coefficient of the monomial zi1zi2 . . . zik

where i1 < i2 < . . . < ik is given by
∑
σ∈Sk sgn(σ)xσ(1),i1 . . . xσ(k),ik Now for a fixed σ ∈ Sk,

let τσ be the injection [k]→ [n] such that τσ(j) = iσ−1(j) : 1 ≤ j ≤ k.
Let (j1, j2) be an index pair that is an inversion in σ, i.e. j1 < j2 and σ(j1) > σ(j2).

Let `1 = σ(j1) and `2 = σ(j2). So iτσ(`1) = iσ−1(`1) and iτσ(`2) = iσ−1(`2). Clearly,
iτσ(`1) < iτσ(`2). Hence:∑

σ∈Sk

sgn(σ)xσ(1),i1 . . . xσ(k),ik =
∑

τσ∈Ik,n

sgn(τσ)x1,τσ(1) . . . xk,τσ(k).

Now the idea is to filter out only the good monomials zi1zi2 . . . zik where i1 < i2 < . . . < ik
from among all the monomials. This can be done by taking Hadamard product (using Theorem
9) with the following polynomial,

Sncn,k(Z) =
∑

S={i1<i2<...<ik}

zi1zi2 . . . zik .

Clearly, Sncn,k has a poly(n, k)-sized ABP which is just the noncommutative version (see
Definition 6) of the well-known ABP for commutative Sn,k. Finally, we substitute each zi = 1
to get the desired ABP for rDet(X). J

ISAAC 2019

38:10 On Explicit Branching Programs

5 Hardness of Evaluating Rectangular Determinant Over Matrix
Alegbras

In this section we prove a hardness result for evaluating the rectangular determinant over
matrix algebras. More precisely, if A is a k× n matrix whose entries Aij are nε × nε rational
matrices for a fixed ε > 0, then it is #W[1]-hard to compute rDet(A). We show this by a
reduction from the #W[1]-complete problem of counting the number of simple k-paths in
directed graphs.

However, there is a simple algorithm of run time O∗(2kr2k) to evaluate rectangular
permanent or rectangular determinant of size k×n over matrix algebras of dimension r. The
proof is given in the appendix.

For the proof of Theorem 5, we also use the notion of Graph Polynomial. Let G(V,E) be
a directed graph with n vertices where V (G) = {v1, v2, . . . , vn}. A k-walk is a sequence of k
vertices vi1 , vi2 , . . . , vik where (vij , vij+1) ∈ E for each 1 ≤ j ≤ k − 1. A k-path is a k-walk
where no vertex is repeated. Let A be the adjacency matrix of G, and let z1, z2, . . . , zn be
noncommuting variables. Define an n× n matrix B

B[i, j] = A[i, j] · zi, 1 ≤ i, j ≤ n.

Let ~1 denote the all 1’s vector of length n. Let ~z be the length n vector defined by ~z[i] = zi.
The graph polynomial CG ∈ F〈Z〉 is defined as

CG(z1, z2, . . . , zn) = ~1T ·Bk−1 · ~z.

Let W be the set of all k-walks in G. The following observation is folklore.

I Observation 1.

CG(z1, z2, . . . , zn) =
∑

vi1vi2 ...vik∈W
zi1zi2 · · · zik .

Hence, G contains a k-path if and only if the graph polynomial CG contains a multilinear
term.

5.1 The Proof of Theorem 5
Let Ik,n be the set of injections from [k]→ [n]. Define

S := {f ∈ I2k,2n|∃g ∈ Ik,n such that ∀i ∈ [k], f(2i− 1) = g(i); f(2i) = n+ g(i)}.

Clearly, there is a bijection between S and Ik,n. We denote each f ∈ S as fg where
g ∈ Ik,n is the corresponding injection. By a simple counting argument, we observe the
following.

I Observation 2. For each f ∈ S, sgn(f) = (−1)
k(k−1)

2 .

Consider a set of noncommuting variables Y = {y1,1, y1,2, . . . , y2k,2n} corresponding to
the entries of a 2k × 2n symbolic matrix Y. Given f ∈ I2k,2n, define mf =

∏2k
i=1 yi,f(i).

I Lemma 17. There is an ABP B of poly(n, k) size that computes a polynomial F ∈ F〈Y〉
such that for each f ∈ I2k,2n, [mf]F = 1 if f ∈ S and otherwise [mf]F = 0.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:11

Proof. The ABP B consists of 2k + 1 layers, labelled {0, 1, . . . , 2k}. For each even i ∈
[0, 2k], there is exactly one node qi at level i. For each odd i ∈ [0, 2k], there are n nodes
pi,1, pi,2, . . . , pi,n at level i. We now describe the edges of B. For each even i ∈ [0, 2k − 2]
and j ∈ [n], there is an edge from qi to pi+1,j labelled yi+1,j . For each odd i ∈ [0, 2k− 1] and
j ∈ [n], there is an edge from pi,j to qi+1 labelled yi+1,n+j . For an injection f ∈ I2k,2n, B
contributes a monomialmf if and only if f ∈ S and B can be computed in poly(n, k) time. J

Suppose, Y is a 2k × 2n matrix where the (i, j)th entry is yi,j . By Observation 2 and
Lemma 17,

rDet(Y) ◦ F (Y) =
∑
fg∈S

sgn(fg)mfg = (−1)
k(k−1)

2
∑
g∈Ik,n

mfg .

Let Z = {z1, . . . , zn} be a set of noncommuting variables. Define for each g ∈ Ik,n,
m′g =

∏k
i=1 zg(i). Define a map τ such that τ : yi,j 7→ zj if i is odd, and τ : yi,j 7→ 1 for even

i. In other words, τ(mfg) = m′g. Notice that,

rDet(Y) ◦ F (Y)|τ = (−1)
k(k−1)

2
∑
g∈Ik,n

mfg |τ = (−1)
k(k−1)

2
∑
g∈Ik,n

m′g = (−1)
k(k−1)

2 S∗n,k(Z).

Given a directed graph G on n vertices, we first construct an ABP for the noncommutative
graph polynomial CG over rationals. From the definition, it follows that CG has a polynomial
size ABP. Notice that, ((rDet(Y) ◦ F (Y)|τ) ◦ CG(Z))(~1) = S∗n,k(Z) ◦ CG(Z)(~1) counts the
number of directed k-paths in the graph G, and hence evaluating this term is #W[1]-hard.
Let us modify the ABP for graph polynomial CG(Z) by replacing each edge labeled by zj at
ith layer by two edges where the first edge is labeled by y2i−1,j and second one is labeled by
y2i,n+j . Let C ′G(Y) is the new polynomial computed by the ABP. Notice that, each monomial
of the modified graph polynomial looks like

∏2k
i=1 yi,f(i) for some f : [2k] 7→ [2n]. More

importantly, for each k-path vi1vi2 . . . vik , if g ∈ Ik,n is the corresponding injection, then∏k
i=1 zg(i) is converted to

∏2k
i=1 yi,fg(i) for fg ∈ S. Notice that, (rDet(Y) ◦ F (Y)|τ) ◦ CG(Z)

= (rDet(Y)◦F (Y)◦C ′G(Y))|τ and hence, evaluating (rDet(Y)◦F (Y)◦C ′G(Y))(~1) is #W[1]-hard.
Now, assume to the contrary, we have an FPT algorithm A to evaluate rDet(Y) over

matrix inputs. As, C ′G(Y) and F (Y) are computed by ABPs, we obtain an ABP B′ computing
C ′G ◦F (Y). From ABP B′, we construct the t× t transition matrices M1,1, . . . ,M2k,2n where
t is the size of the ABP B′. From Lemma 10 we know that, we are interested to compute
rDet(Y) over the matrix tuple (M1,1, . . . ,M2k,2n) which is same as invoking the algorithm
A on the following 2k × 2n matrix A: ai,j = Mi,j . By a simple reduction we get a similar
hardness over nε × nε dimensional matrix algebras for any fixed ε > 0. J

6 Conclusion

In this paper, we have presented the construction of explicit algebraic branching pro-
grams for noncommutative symmetrized elementary symmetric polynomial, noncommutative
rectangular permanent polynomial and commutative rectangular determinant polynomial.
Additionally, we present an explicit algebraic branching program for noncommutative square
determinant polynomial. In most of the cases the constructions are optimal in the sense of
lower bound result of Nisan [9]. It is also shown that evaluating rectangular determinant
polynomial over matrix algebras is #W[1]-hard. The paper brings out further avenues of
research. A very interesting problem is to tightly classify the complexity of computing
the commutative rectangular k × n determinant polynomial. Is it computable in poly(n, k)

ISAAC 2019

38:12 On Explicit Branching Programs

time? If not, can one show a complexity theoretic hardness of evaluating the commutative
determinant polynomial? We feel that the main obstacle is to interpret rectangular determ-
inant computation combinatorially. Another open end is to construct an explicit algebraic
branching program for noncommutative rectangular determinant polynomial of size O∗(nck)
for some c < 1 similar to the one we have constructed for noncommutative rectangular
permanent polynomial.

References
1 Vikraman Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay. Fast

Exact Algorithms Using Hadamard Product of Polynomials. CoRR, abs/1807.04496, 2018.
arXiv:1807.04496.

2 Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic Circuits and the
Hadamard Product of Polynomials. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT
Kanpur, India, pages 25–36, 2009. doi:10.4230/LIPIcs.FSTTCS.2009.2304.

3 Vikraman Arvind and Srikanth Srinivasan. On the hardness of the noncommutative
determinant. In Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 677–686, 2010. doi:
10.1145/1806689.1806782.

4 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting Paths and
Packings in Halves. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, pages
578–586, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

5 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Evaluation of
permanents in rings and semirings. Inf. Process. Lett., 110(20):867–870, 2010. doi:10.1016/
j.ipl.2010.07.005.

6 Markus Bläser. Noncommutativity Makes Determinants Hard. In Automata, Languages, and
Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part I, volume 243, pages 172–183, 2013. doi:10.1007/978-3-642-39206-1_15.

7 Steve Chien, Prahladh Harsha, Alistair Sinclair, and Srikanth Srinivasan. Almost settling the
hardness of noncommutative determinant. In Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 499–508, 2011.
doi:10.1145/1993636.1993703.

8 Ioannis Koutis and Ryan Williams. LIMITS and applications of group algebras for parameter-
ized problems. ACM Trans. Algorithms, 12(3):31:1–31:18, 2016. doi:10.1145/2885499.

9 Noam Nisan. Lower Bounds for Non-Commutative Computation (Extended Abstract). In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 410–418, 1991. doi:10.1145/103418.103462.

10 Virginia Vassilevska Williams and Ryan Williams. Finding, Minimizing, and Counting
Weighted Subgraphs. SIAM J. Comput., 42(3):831–854, 2013. doi:10.1137/09076619X.

A Computing Rectangular Permanent and Determinant over Small
Dimensional Algebras

The main result of the section is as follows.

I Theorem 18. Let F be any field and A be an r dimensional algebra over F with basis
e1, e2, . . . , er. Let {Aij}1≤i≤k

1≤j≤n
be a k × n matrix with Aij ∈ A. Then rPer(A) and rDet(A)

can be computed in deterministic O∗(2krk) time.

http://arxiv.org/abs/1807.04496
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2304
https://doi.org/10.1145/1806689.1806782
https://doi.org/10.1145/1806689.1806782
https://doi.org/10.1016/j.ipl.2010.07.005
https://doi.org/10.1016/j.ipl.2010.07.005
https://doi.org/10.1007/978-3-642-39206-1_15
https://doi.org/10.1145/1993636.1993703
https://doi.org/10.1145/2885499
https://doi.org/10.1145/103418.103462
https://doi.org/10.1137/09076619X

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 38:13

Proof. We present the proof for rectangular permanent. The proof for rectangular determ-
inant is identical. The proof follows easily from expressing each entry Ai,j in the standard
basis and then rearranging terms. Let e1, e2, . . . , er be the standard basis for A over F. First
we note that

rPer(A) =
∑
f∈Ik,n

k∏
i=1

Aif(i)

=
∑
f∈Ik,n

k∏
i=1

r∑
`=1

A
(`)
if(i)e`

=
∑
f∈Ik,n

∑
(t1,t2,...,tk)∈[r]k

k∏
i=1

A
(ti)
if(i)

k∏
i=1

eti

=
∑

(t1,t2,...,tk)∈[r]k
(
∑
f∈Ik,n

k∏
i=1

A
(ti)
if(i))

k∏
i=1

eti . (1)

Now we observe that

∑
f∈Ik,n

k∏
i=1

A
(ti)
if(i) = rPer(A(t1,t2,...,tk)),

where A(t1,t2,...,tk) is the k × n matrix defined as A(t1,t2,...,tk)
ij = A

(ti)
ij . Thus we have

rPer(A) =
∑

(t1,t2,...,tk)∈[r]k
rPer(A(t1,t2,...,tk))

k∏
i=1

eti . (2)

For a fixed (t1, t2, . . . , tk) ∈ [r]k the value rPer(A(t1,t2,...,tk)) can be computed in O∗(2k)
time using the rectangular permanent algorithm [10]. Now we can compute rPer(A) by
computing rk many such rectangular permanents and putting them together according to
equation 2. This gives a deterministic O∗(2kr2k) time algorithm for computing rPer(A). J

As a direct corollary we get the following.

I Corollary 19. Let F be any field and let A be a k × n matrix with Aij ∈Mr×r(F). Then
rPer(A) and rDet(A) can be computed in O∗(2krk) time.

ISAAC 2019

	Introduction
	Preliminaries
	The Proof of Theorem 2
	The construction of ABP for S*_{n,k}(Y)
	The construction of ABP for rPer(Y)

	The Proof of Theorem 4
	A 2^k-explicit ABP for k x k noncommutative determinant
	A 2^k-explicit ABP weakly equivalent to S^* _{n,k}
	A 2^k-explicit ABP for k x n commutative rectangular determinant

	Hardness of Evaluating Rectangular Determinant Over Matrix Alegbras
	The Proof of Theorem 5

	Conclusion
	Computing Rectangular Permanent and Determinant over Small Dimensional Algebras

