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Abstract

The identity testing of rational formulas (RIT) in the free skew field efficiently reduces to

computing the rank of a matrix whose entries are linear polynomials in noncommuting variables

[22]. This rank computation problem has deterministic polynomial-time white-box algorithms

[19, 24] and a randomized polynomial-time algorithm in the black-box setting [13]. In this

paper, we propose a new approach for efficient derandomization of black-box RIT. Additionally,

we obtain results for matrix rank computation over the free skew field, and construct efficient

linear pencil representations for a new class of rational expressions. More precisely, we show the

following results:

• Under the hardness assumption that the ABP (algebraic branching program) complex-

ity of every polynomial identity for the k × k matrix algebra is 2Ω(k) [8], we obtain a

subexponential-time black-box algorithm for RIT in almost general setting. This can be

seen as the first “hardness implies derandomization” type theorem for rational formulas.

• We show that the noncommutative rank of any matrix over the free skew field whose en-

tries have small linear pencil representations can be computed in deterministic polynomial

time. Prior to this, an efficient rank computation was only known for matrices with non-

commutative formulas as entries [18]. As special cases of our algorithm, we obtain the first

deterministic polynomial-time algorithms for rank computation of matrices whose entries

are noncommutative ABPs or rational formulas.

• Motivated by the definition given by Bergman [6], we define a new class of rational func-

tions where a rational function of inversion height at most h is defined as a composition of

a noncommutative r-skewed circuit (equivalently an ABP) with inverses of rational func-

tions of this class of inversion height at most h− 1 which are also disjoint. By definition,

this class contains ABPs and rational formulas. We obtain a polynomial-size linear pen-

cil representation for this class. As a by-product, we obtain a white-box deterministic

polynomial-time identity testing algorithm for the class.
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1 Introduction

In algebraic circuit complexity the basic arithmetic operations are additions, multiplications, and

inverses. Using these arithmetic operations algebraic circuits compute either polynomials or rational

functions. An important sub-area of algebraic complexity is noncommutative computation where

the multiplication of variables is not commutative and the set of monomials (over the variables)

form a free monoid. If we allow only addition and multiplication gates in the noncommutative

formulas/circuits, they compute noncommutative polynomials (similar to the commutative case)

in the free algebra.

In the commutative case, the role of inverses is well understood but in the noncommutative

world it is quite subtle. To elaborate, it is known that any commutative rational expression can

be expressed as fg−1 where f and g are two commutative polynomials [32]. However, noncom-

mutative rational expressions such as x−1 + y−1 or xy−1x cannot be represented as fg−1 or f−1g.

If we have nested inverses then it makes the rational expression more complicated, for example

(z + xy−1x)
−1
− z−1. Moreover, a noncommutative rational expression is not always defined on

a matrix substitution. For a noncommutative rational expression r, its domain of definition is

the set of matrix tuples (of any dimension) where r is defined. We denote it by dom(r). Two

rational expressions r1 and r2 are equivalent if they agree on dom(r1) ∩ dom(r2). This induces an

equivalence relation on the set of all noncommutative rational expressions (with nonempty domain

of definition). It was used by Amitsur in his characterization of the universal free skew field (de-

noted by F⦓
¯
x⦔ when the variable set is

¯
x = {x1, x2, . . . , xn}) and the equivalence classes are called

the noncommutative rational functions [1]. This object plays an important role in the study of

noncommutative algebra [1, 11], control theory [26], and algebraic automata theory [34].

Computationally, rational functions are represented by noncommutative arithmetic circuits or

formulas using addition, multiplication, and inverse gates [22]. The inversion height of a rational

formula is the maximum number of inverse gates in a path from an input gate to the output

gate. It is known that the inversion height of a rational formula of size s is bounded by O(log s)

[22]. Hrubeš and Wigderson consider the rational identity testing problem (RIT) of testing the

equivalence of two rational formulas [22]. It is the same as testing whether a rational formula

computes the zero function in the free skew field. In other words, decide whether there exists

a matrix tuple (of any dimension) such that the rational formula evaluates to nonzero on that

substitution. Rational expressions exhibit peculiar properties which seem to make the RIT problem

quite different from polynomial identity testing. The apparent lack of canonical representations

such as the sum of monomials representation for polynomials and the use of nested inverses in

noncommutative rational expressions complicate the problem. For example, the rational expression

(x + xy−1x)−1 + (x + y)−1 − x−1 of inversion height two is a rational identity, known as Hua’s

identity [23].

A second characterization of the free skew field entries was developed by Cohn [11]. A linear

pencil L of size s over noncommuting variables
¯
x = {x1, . . . , xn} is a s× s matrix whose entries are

linear forms in
¯
x variables, i.e. L = A0 +

∑n
i=1Aixi, where each Ai is an s× s matrix over the field

F. Cohn showed that for every free skew field entry r in F⦓
¯
x⦔, there is a linear pencil L such that

r is an entry of the inverse of L. More generally, we say that r has a linear pencil representation of

size s, if for vectors
¯
c,
¯
b ∈ F

s and s × s linear pencil L, r =
¯
ctL−1

¯
b where

¯
ct is the transpose of

¯
c.

Hrubeš and Wigderson give an efficient reduction from the RIT problem to the singularity testing

problem of linear pencils [22]. In particular, if r is a rational formula of size s, they showed that r

has a linear pencil representation L of size at most 2s such that r is defined on a matrix tuple if and
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only if L is invertible on that tuple [22]. Using this connection, they reduce the RIT problem to the

problem of testing whether a given linear pencil is invertible over the free skew field in deterministic

polynomial time. The latter is the noncommutative Singular problem, whose commutative analog

is the symbolic determinant identity testing problem. The deterministic complexity of symbolic

determinant identity testing is completely open in the commutative setting [25]. In contrast, the

Singular problem in noncommutative setting has deterministic polynomial-time algorithms in the

white-box model due to the works of Garg et al. [19] which is based on operator scaling and that

of Ivanyos et al. [24] which is based on the second Wong sequence and a constructive version of

regularity lemma. As a consequence, a deterministic polynomial-time white-box RIT algorithm

follows.

A central open problem in this area is to design an efficient deterministic algorithm for non-

commutative Singular problem in the black-box case [19]. The algorithms by Garg et al. [19] and

Ivanyos et al. [24] are inherently sequential and we believe that they are unlikely to be helpful for

black-box algorithm design. It is well-known [19] that an efficient black-box algorithm (via a hitting

set construction) for Singular would generalize the celebrated quasi-NC algorithm for bipartite

matching significantly [16]. There is a randomized polynomial-time black-box algorithm for this

problem [13].

Even for the RIT problem (which could be easier than the noncommutative Singular problem),

the progress towards designing efficient deterministic black-box algorithm is very limited. In fact,

only very recently a deterministic quasipolynomial-time black-box algorithm for identity testing of

rational formulas of inversion height two has been designed [2]. It is interesting to note that in the

literature of identity testing, the noncommutative Singular problem and the RIT problem stand

among rare examples where deterministic polynomial-time white-box algorithms are designed but

for the black-box case no deterministic subexponential-time algorithm is known.

Remark 1. For noncommutative polynomials computed by polynomial-size arithmetic circuits,

efficient randomized polynomial identity testing algorithms are known either for polynomial degree

bound or for exponential sparsity bound [8, 4]. In contrast, the complexity of testing the identity

of rational circuits is completely open. In fact, even in the white-box setting we do not have a

randomized subexponential-time algorithm.

1.1 Derandomization of RIT from the hardness of polynomial identities

In this paper, we propose a new approach to tackle the RIT problem in the black-box case under a

suitable hardness assumption, which is a known conjecture in theory of Polynomial Identities (PI).

This was first raised by Bogdanov and Wee [8, Section 6.2].

Conjecture 2. The ABP complexity (i.e. the minimum size of an algebraic branching program) of

a polynomial identity for the k × k matrix algebra Mk(F) is 2Ω(k).

The conjecture implies that ABPs of size s cannot evaluate to zero on all O(log s)-dimensional

matrices. Bogdanov and Wee [8] also observed that if the conjecture holds then there is an sO(log2 s)-

time black-box PIT for noncommutative ABPs1 and as supportive evidence showed that the con-

jecture is indeed true for normal identities (of which the standard identity is a special case), and

the identity of algebraicity.

1Independent of the conjecture, Forbes-Shpilka [17] obtained an s
O(log s)-time black-box PIT for noncommutative

ABPs.
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Consider the following variant of the usual hitting set definition.

Definition 3. For a class of rational formulas R, we say that a hitting set H is strong if for any

formula r ∈ R, there exists a matrix tuple
¯
p ∈ H such that r(

¯
p) is invertible.

In the following theorem, we show that an efficient derandomization of RIT is possible assuming

Conjecture 2. This can be seen as the first “hardness implies derandomization” type result for

rational formulas.

Theorem 4. If Conjecture 2 is true then we can construct a strong hitting set of size

(snh(γ log s)2h+2)O(h(γ log s)2h+2) for rational formulas r of size s over n variables and inversion

height h in deterministic (snh(γ log s)2h+2)O(h(γ log s)2h+2)-time for some constant γ > 1. This re-

sult holds over infinite or sufficiently large finite fields and h 6 β(log s/ log log s) for any 0 < β < 1.

As a special case for h = O(1), this gives a quasipolynomial-size hitting set. To get a

subexponential-size bound 2s
δ
on the hitting set where δ is any constant in (0, 1), we can allow

h 6 cδ(log s/ log log s). Here cδ ∈ (0, 1) is a constant that depends on δ.

As already mentioned, the inversion height of size s rational formula is bounded by O(log s) [22].

Therefore, Theorem 4 solves the RIT problem in an almost general setting.

We believe that the main interesting point about Theorem 4 is that it relates the black-box RIT

derandomization that involves handling nested inverses with a problem purely for noncommutative

polynomials: we can obtain a deterministic black-box RIT algorithm by showing an exponential size

lower bound for ABPs computing any polynomial identity for matrix algebras. Over the years such

hardness assumptions have proved to be useful in designing deterministic algorithms for problems

related to identity testing [20, 25, 5, 14, 10, 28].

1.1.1 Proof Sketch

The first step in proving Theorem 4 is a variable reduction step that shows the identity testing

of a rational formula r of inversion height h can be reduced to the identity testing of another

rational formula r
′ over 2(h+1) variables in a black-box manner. Notice that for noncommutative

polynomials (for which h = 0), such a reduction is standard and given by xi → y0y
i
1y0 where y0, y1

are new noncommutative variables. We prove it by induction on h. In fact, we use a stronger

inductive hypothesis that roughly says that for every nonzero rational formula r of inversion height

h, there also exists a 2(h+1)-tuple of matrices tuple (q00, . . . , qh0, q01, . . . , qh1) such that r(p1, . . . , pn)

is invertible and for each i ∈ [n], pi =
∑h

j=0 qj0q
i
j1qj0. Once we assume the inductive hypothesis

for inversion height h − 1, for each rational formula r of inversion height h, we get a matrix tuple

of the form
¯
p = (p1, . . . , pn) where pi =

∑h−1
j=0 qj0q

i
j1qj0 such that r is defined on

¯
p. Then, we use

concepts from matrix coefficient realization theory and construct the nonzero generalized series

r(
¯
x +

¯
p) [34]. Now, we can use the standard bivariate encoding trick on r(

¯
x +

¯
p) to complete the

variable-reduction step.

The next important step that we establish is that if Conjecture 2 is true then for any rational

formula r of size s and inversion height h, one can find a matrix tuple
¯
p of dimension (γ log s)h+1

(for some constant γ) such that r(
¯
p) is an invertible matrix. This is done via induction on h and

a bootstrapping argument. For the base case, we take h = 0. In this case the rational formula is

also an ABP of size s and Conjecture 2 confirms that r is nonzero on a generic matrix tuple
¯
p of

dimension O(log s). Also r(
¯
p) is invertible by an application of Amitsur’s theorem [1]. Inductively

we assume that we can find such a matrix tuple
¯
q of dimension dh−1 6 (γ log s)h for any rational
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formula r of inversion height at most h−1 and size at most s. An easy observation shows that given

a rational formula r of inversion height h, r is defined on such a matrix tuple
¯
q. We again use matrix

coefficient realization theory[34] to construct the nonzero generalized series r(
¯
x+

¯
q) by expanding

r around the point
¯
q. Substituting the variables x1, x2, . . . , xn by symbolic generic matrices over

noncommuting variables Z(1), . . . , Z(n) of dimension dh−1, we observe that each entry of the output

matrix r(
¯
Z +

¯
q) is a recognizable series computed by a small size algebraic automaton.

By a standard result in algebraic automata theory generally attributed to Schützenberger [15,

Corollary 8.3, Page 14], we know that at least one of the series is nonzero even when we truncate it to

a small degree. Applying the Conjecture 2, we infer that the truncated series is nonzero on generic

matrices of dimension roughly ≈ log(sdh−1). A simple scaling trick shows that the full (infinite)-

series is also nonzero on generic matrices of same dimension. This determines the dimension of the

generic matrices on which the rational formula r is nonzero. Moreover the rational formula evaluates

to an invertible matrix on generic matrix substitution of that dimension. This is a consequence of

Amitsur’s theorem [1].

Once we have these two steps, the rest of the proof is straightforward. Given nonzero r over

the variables x1, . . . , xn of height h, we apply the variable reduction step to construct nonzero r
′ of

height h (and roughly of same size) over 2(h+1) variables {y00, y01, . . . , yh0, yh1}. Now we apply the

second step that says that r′ is nonzero (and hence invertible) on generic matrices over Z variables

of dimension (γ log s)h+1. We also make use of the fact that r
′(
¯
y) has a small-size linear pencil.

To construct the final hitting set, we just need to hit two sparse polynomials of sparsity bound

roughly (snh(γ log s)2h+2)O(h(γ log s)2h+2) and this can be done by applying the standard result of

sparse polynomial hitting set construction [27].

1.2 Noncommutative rank of matrices over the free skew field

For a matrix M = (gi,j)m×m over the free skew field F⦓
¯
x⦔, its noncommutative rank(denoted by

ncrank(M)) is the least positive integer r 6 m such that M = PQ for an m× r matrix P and an

r ×m matrix Q over F⦓
¯
x⦔. This is also called the inner rank. If r = m, then M is invertible in

F⦓
¯
x⦔.

Indeed, a fundamental result of Cohn [12] showed that for any matrix M = (gi,j)m×m over the

noncommutative ring F〈
¯
x〉 such that ncrank(M) = r, there exists an m× r matrix P and an r×m

matrix Q over F〈
¯
x〉.

As already mentioned, the problem of computing the noncommutative rank of a linear matrix

admits deterministic polynomial-time white-box algorithms [19, 24]. If the matrix entries consist

of some higher degree terms, one can use Higman’s trick [21] to reduce it to computing rank of a

linear matrix. Consider the following well-known example of a 2× 2 matrix [18]:

[
1 x

y z + xy

]
.

Higman’s trick reduces it to another 3× 3 linear matrix preserving the complement of the noncom-

mutative rank in the following way:

[
1 x

y z + xy

]
7→



1 x 0

y z + xy 0

0 0 1


 7→



1 x 0

y z x

0 −y 1


 .
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However, it would not be efficient in general. In [18, Proposition A.2], the authors showed an

effective use of Higman’s trick to efficiently reduce it to the rank computation of a linear matrix

when the entries are computed by noncommutative formulas.

In this paper, we address the matrix rank computation over the free skew field in a very general

setting. In particular, we obtain an efficient reduction to the rank computation of a linear matrix

even when the entries are free skew field elements computed by small linear pencils. More precisely,

we show the following.

Theorem 5. Let M = (gi,j)m×m be a matrix such that for each i, j ∈ [m], gi,j in F⦓x1, . . . , xn⦔

has a linear pencil of size at most s. Then, the noncommutative rank of M can be computed in

deterministic poly(m,n, s) time. Moreover, in deterministic poly(m,n, s) time, we can output a

matrix tuple
¯
T = (T1, . . . , Tn) of dimension d such that the matrix the rank of matrix M(

¯
T ) is

d · ncrank(M). The field F could be infinite or sufficiently large finite field.

As any noncommutative formula has a small linear pencil, our result subsumes a particular

result of Garg et al. [18] which shows the efficient matrix rank computation when the entries

are noncommutative formulas. If the entries of the matrices are computed by noncommutative

ABPs, by a direct application of the algorithm due to Garg et al. [18] we can compute the rank

in deterministic quasipolynomial time as any ABP has a quasipolynomial-size formula. However,

since a noncommutative ABP has a polynomial-size linear pencil [22], as a direct corollary of

Theorem 5, we obtain a deterministic poly(m,n, s)-time algorithm for the ABP case. Moreover,

since noncommutative rational formulas also have polynomial-size linear pencils [22], we obtain a

deterministic poly(m,n, s)-time algorithm even if each entry of the matrix is computed by a rational

formula.

1.2.1 Proof Sketch

The basic principle of our proof is to reduce the problem to the rank computation of a linear matrix.

However, there is no clear notion of degree reduction for arbitrary elements over the free skew field.

This forces us to find a new approach of constructing this linear matrix efficiently that can also

handle a matrix of skew field entries as input. The main idea of the proof is to show that the linear

pencil representation enjoys the following closure property. Let A be an m×m generic matrix over

m2 indeterminates and let substituting each indeterminate of A by a free skew field entry that also

has a linear pencil of size at most s, we obtain M . We show that we can find a small linear matrix

L efficiently such that ncrank(L) = m2s+ ncrank(M). Somewhat surprisingly, the construction of

L turned out to be relatively simple and elegant.

There are many equivalent notions of noncommutative rank for linear matrices (for example,

see [24, 19]). A notion of particular interest is the blow-up definition that is crucial in the algorithm

of Ivanyos et al. [24]. The blow-up notion enables to find a matrix tuple on which the maximum

rank is achieved. We extend this notion and introduce a blow-up definition for noncommutative

rank (denoted by ncrank∗) of matrices with free skew field entries. We show that for any matrix M

of free skew field entries, ncrank(M) = ncrank∗(M). Introduction of the blow-up definition allows

us to find efficiently the matrix tuple
¯
T of dimension d such that the rank ofM(

¯
T ) is d ·ncrank(M).

One can view the blow-up definition in this case as an extension of the theory developed by Derksen

and Makam [13] for the linear case. This extension could be of independent mathematical interest.
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1.3 Linear pencil representations for a new class of rational functions

The study of linear pencils seem to be the key in understanding several basic questions in rational

function theory [22, 18, 24, 34, 13]. In this section, our main motivation is to understand the

relation between the linear pencil representations of rational functions and the representations

using basic arithmetic operations. Let RF, LR,RC be the class of polynomial-size rational formulas,

the class of rational functions that have polynomial-size linear pencil representations, and the class

of polynomial-size rational circuits. Hrubeš and Wigderson [22] prove an exponential size lower

bound on the size of the rational formulas computing an entry of the inverse of a symbolic matrix.

Moreover, they show that each entry of the inverse of a symbolic matrix is computable by a rational

circuit of polynomial size. Therefore, the current known relation is RF ⊂ LR ⊆ RC.

Following Bergman [6], a noncommutative rational function r(
¯
x) of inversion height at most

h can be inductively defined as r(
¯
x) = f(x1, . . . , xn, g

−1
1 , . . . , g−1

m ), where f is a noncommutative

polynomial and g1, . . . , gm ∈ F⦓
¯
x⦔ are rational functions of inversion height 6 h − 1. Using this,

we give the following definition.

Definition 6. A rational r-skewed circuit of inversion height 0 is a noncommutative r-skewed cir-

cuit2 which is also a noncommutative ABP. Inductively, we define r(
¯
x) = f(x1, . . . , xn, g

−1
1 , . . . , g−1

m )

as a rational r-skewed circuit of inversion height at most h if f(
¯
x, y1, . . . , ym) is a noncommutative

r-skewed circuit (m > 0) and for each i ∈ [m], gi(
¯
x) is a rational r-skewed circuit of inversion height

6 h− 1.

Let R-rSC be the class of all rational functions computable by polynomial-size rational r-skewed

circuits. Inspecting the polynomial size rational circuit for symbolic matrix inverse [22], one can

notice that each entry of the inverse of a polynomial-size symbolic matrix can indeed be computed

by a polynomial-size rational r-skewed circuit. Hence LR ⊆ R-rSC. What is the exact expressive

power of the class LR? In particular, is it true that LR = R-rSC? It now suffices to show that

R-rSC ⊆ LR. While we are unable to answer this completely, we exhibit such a containment under

additional structural restriction.

Definition 7. An inversely disjoint rational r-skewed circuit of inversion height 0 is a

noncommutative r-skewed circuit (which is also an ABP). Inductively, we define r(
¯
x) =

f(x1, . . . , xn, g
−1
1 , . . . , g−1

m ) as an inversely disjoint rational r-skewed circuit of inversion height at

most h if f(
¯
x, y1, . . . , ym) is a noncommutative r-skewed circuit (m > 0) and for each i ∈ [m], gi(

¯
x)

is a inversely disjoint rational r-skewed circuit of inversion height 6 h − 1 and for all i 6= j, the

circuits of gi and gj are disjoint.

Let ID-R-rSC be the class of rational functions computed by polynomial-size inversely disjoint

r-skewed circuits. This class contains rational formulas, ABPs. We are able to give polynomial-size

linear pencil representations for this class.

Theorem 8. Over any field, an inversely disjoint rational r-skewed circuit of size s has a linear

pencil representation of size O(s2) which can be computed in deterministic polynomial time from

the given circuit.

This gives the following containment:

RF ⊆ ID-R-rSC ⊆ LR ⊆ R-rSC ⊆ RC,

2Usually in the literature they are called right-skew circuits. For the purpose of this paper, we prefer referring to

them as right-skewed and reserve the word “skew” for the skew field.
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where we know at least one of the first two containment is proper. We do not know any uncon-

ditional separation between RF and ID-R-rSC. This question is somewhat similar in spirit to the

separation of noncommutative formulas and ABPs which is still open [30, 9, 33]. However, a simple

inductive argument shows that a function of inversion height h in ID-R-rSC can be computed by

rational formula of size sO(h log s). By the standard argument, a noncommutative r-skewed circuit

of size s can be computed by a formula of size sO(log s). Consider an inversely disjoint r-skewed

circuit r(
¯
x, g−1

1 , . . . , g−1
m ) where each gi ∈ ID-R-rSC of inversion height 6 h − 1 for each 1 6 i 6 m.

Inductively, each gi has a rational formula of size sO((h−1) log s). Therefore, the size of the rational

formula computing r can be at most sO(h log s). If h = O(log s), we then have a quasipolynomial-size

formula simulation for this class. However, unlike rational formulas [22], it is not clear whether h

can be taken as O(log s) for a general inversely disjoint r-skewed circuit of size s.

Using Theorem 8, the following corollary is obtained by the application of rank computation

algorithm in [24]. For the black-box case, we can apply the algorithm in [13]. In the proof of the

corollary we also mention how to apply the algorithm in [24] for the black-box case and get an

efficient randomized algorithm over the finite fields also.

Corollary 9. Let F be infinite or any sufficiently large field. For an inversely disjoint rational

r-skewed circuit of size at most s and over n variables, we can decide whether it computes zero in

F⦓
¯
x⦔ or not in deterministic poly(s, n) time in white-box, and in randomized poly(s, n) time in

black-box.

1.3.1 Proof Sketch

As the key component, the proof uses a composition lemma that computes an efficient linear pencil

for f(
¯
x, g−1

1 , . . . , g−1
m ) from the linear pencils of f(

¯
x,
¯
y) and g−1

1 , . . . , g−1
m . It turns out that the proof

of this composition result is more subtle than the usual proofs of the linear pencil constructions for

rational formulas [22, 34].

We first elaborate on the composition lemma. Let L be an s × s linear pencil over x1, . . . , xn
and y1, . . . , ym. Let fi,j = (L−1)i,j for i, j ∈ [s]. Let g1, . . . , gm be rational functions over x1, . . . , xn
such that each gk has a linear pencil Lk of size at most s′. Then we can construct a single linear

pencil L̃ of size at most ms′ +m+ 2s2 + s in poly(s′, s,m, n)-time such that

(L̃−1)2s2+ŝ+i,2s2+ŝ+j = fi,j(
¯
x, g−1

1 , . . . , g−1
m ) for i, j ∈ [s], where ŝ = ms′ +m.

Given a rational function r computed by an inversely disjoint rational r-skewed circuit of size at

most s, we consider the rational function r
−1 which is still in the same class (with inversion height

increased by one). Using the composition result, we construct a linear pencil of size O(s2) for

r
−1. Notice that r(

¯
x,
¯
y) is a polynomial computed by an ABP or a r-skewed circuit and it has a

polynomial-size linear pencil [22]. Using a standard idea, r−1 also has a small linear pencil L which

we use as the input to the composition lemma along with the inductively constructed linear pencils

for g1, . . . , gm.

The final linear pencil L̃ which is the outcome of the composition lemma has the additional

property that for any matrix tuple r(
¯
p), r−1(

¯
p) is defined if and only if L̃(

¯
p) is invertible. Since

r 6= 0 if and only if r−1 is defined [1], we can now use the algorithm for noncommutative Singular

problem [24] on the linear pencil L̃ to check the identity of r.
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Organization

In Section 2, we mainly provide brief background on linear pencils and its connection with the

rational identity testing problem, and also present some results in matrix coefficient realization

theory. We prove Theorem 4 in Section 3. The proof of Theorem 5 is given in Section 4.2. We give

the proof of Theorem 8 in Section 5. We state some open questions in Section 6.

2 Preliminaries

2.1 Linear pencils and rational functions

Let F be a field. A linear pencil L of size s over noncommuting
¯
x = {x1, . . . , xn} variables is a

s× s matrix where each entry is a linear form in
¯
x. That is, L = A0 +

∑n
i=1Aixi where each Ai in

Ms(F). Evaluation of a linear pencil at a matrix tuple
¯
p = (p1, . . . , pn) in M

n
m(F) is defined using

the Kronecker (tensor) product: L evaluated at
¯
p is A0 ⊗ Im +

∑n
i=1Ai ⊗ pi.

Given a linear pencil L, the noncommutative Singular problem is to decide whether there is

a tuple
¯
p in M

n
m(F) of m×m matrices for some m such that the output matrix L evaluated at

¯
p

is invertible.

A rational function r in F⦓
¯
x⦔ has a linear pencil representation L of size s if r =

¯
ctL−1

¯
b for

vectors
¯
c,
¯
b ∈ F

s. Following is the re-statement of Proposition 7.1 proved in [22].

Proposition 10. Let r be a rational function given by a rational formula of size s. Then r can

be represented (L−1)i,j for i, j ∈ [s] where L is a linear pencil of size at most 2s. Moreover, r is

nonzero if and only if L is invertible.

Clearly in the above proposition the choice for
¯
c,
¯
b are the indicator vectors ei and ej .

We also use the following classical result of Amitsur [1] in this paper.

Theorem 11 ([1]). Let r be a rational function which is nonzero on Mk(F) where F is infinite or

any sufficiently large field. Then r(Y1, . . . ,Yn) is an invertible matrix in Mk(F(
¯
Y)) where Y1, . . . ,Yn

are generic indeterminate matrices of dimension k.

Remark 12. Usually Theorem 11 is stated over infinite fields. However it can be adapted over

any sufficiently large finite field F using the techniques in [24]. We briefly discuss it here. For

details we refer the reader to ALGORITHM 1 in [24]. Define the field F
′ by adjoining a kth

root ζ to F i.e. F′ = F[ζ]. Then construct a F′(Z1, Z) basis Γ = {C1, . . . , Ck2} of Mk(F
′(Z1, Z))

such that F′(Z1, Z
k)-linear span of Γ is a central division algebra over F

′(Z1, Z
k). Here Z1, Z are

two independent formal variables. Using that we can see that r is invertible on a generic linear

combination of Γ. Now by a standard argument the generic variables can be fixed from F (assuming

that F is sufficiently large) to obtain a matrix tuple
¯
T such that r(

¯
T ) is invertible. This also implies

that r(
¯
Y ) is invertible where

¯
Y is a generic matrix tuple of dimension k.

2.2 Algebraic branching programs (ABPs)

Definition 13. An algebraic branching program (ABP) is a layered directed acyclic graph with

one in-degree-0 vertex called source, and one out-degree-0 vertex called sink. Its vertex set is

partitioned into layers 0, 1, . . . , d, with directed edges only between adjacent layers (i to i + 1).

The source and the sink are in layers zero and d, respectively. Each edge is labeled by a linear
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form over F in variables {x1, . . . , xn}. The polynomial computed by the ABP is the sum over all

source-to-sink directed paths of the product of linear forms that label the edges of the path. The

maximum number of nodes in any layer is called the width of the algebraic branching program.

The size of the branching program is taken to be the total number of nodes.

Equivalently, an ABP of width w and d many layers can be defined as an entry of a product of

d many linear matrices of size at most w. Therefore, the polynomial f computed by an ABP is of

form (M1 · · ·Md)i,j for some i, j ∈ [w].

Proposition 14. An ABP of size s has a linear pencil of size at most 2s from the following

construction:

Lf =




Iw −M1

Iw −M2

. . .
. . .

Iw −Md

Iw



.

The ABP is computed in the upper right corner.

This construction is well-known and also used in [22].

2.3 Matrix Inverse

Let P be a 2× 2 block matrix shown below.

P =

[
p1 p2
p3 p4

]

where p1 is invertible and p2 and p3 can be any rectangular matrices and (p4 − p3p
−1
1 p2) is also

invertible. Then we note that the inverse of P has the following structure [22].

P−1 =

[
p−1
1 (I + p2(p4 − p3p

−1
1 p2)

−1p3p
−1
1 ) −p−1

1 p2(p4 − p3p
−1
1 p2)

−1

−(p4 − p3p
−1
1 p2)

−1p3p
−1
1 (p4 − p3p

−1
1 p2)

−1

]
(1)

If p3 = 0, then P−1 has a simpler structure.

P−1 =

[
p−1
1 −p−1

1 p2p
−1
4

0 p−1
4

]
. (2)

Hrubeš and Wigderson use Equation 1 to compute each entry of the matrix inverse recursively

by a small rational circuit.

Theorem 15. [22, Theorem 2.4] Each entry of an s×s symbolic matrix is computable by a rational

circuit of size O(sω) where ω is the exponent of matrix multiplication.

Remark 16. We observe that the same construction also yields a polynomial-size rational r-skewed

circuit as defined in Definition 6 for the matrix inverse. Inspecting Equation 1, we just need to

compute the entries of p−1
1 and (p4 − p3p

−1
1 p2)

−1 and after that the remaining computation is

straightforward. Notice that, in the composition step while replacing each yi by g
−1
i , Definition 6

allows any gi to be a sub-circuit of some gj . Therefore, we can reuse the r-skewed circuit computing

each entry of p−1
1 and follow the same recursive construction to obtain a rational r-skewed circuit

of size O(sω).

10



2.4 Recognizable series

A comprehensive treatment is in the book by Berstel and Reutenauer [7]. We will require the

following concepts. Recall that F⟪
¯
x⟫ is the formal power series ring over a field F. A series S in

F⟪
¯
x⟫ is recognizable if it has the following linear representation: for some integer s, there exists a row

vector
¯
c ∈ F

1×s, a column vector
¯
b ∈ F

s×1 and an s × s matrix M whose entries are homogeneous

linear forms over x1, . . . , xn i.e.
∑n

i=1 αixi such that S =
¯
ct
(∑

k>0M
k
)
¯
b. Equivalently, S =

¯
ct(I −M)−1

¯
b. We say, S has a representation (

¯
c,M,

¯
b) of size s 3.

The following theorem is a basic result in algebraic automata theory.

Theorem 17. A recognizable series with representation (
¯
c,M,

¯
b) of size s is nonzero if and only if

¯
ct
(∑

k6s−1M
k
)
¯
b is nonzero.

It has a simple linear algebraic proof [15, Corollary 8.3, Page 145 ]. This result is generally

attributed to Schützenberger. For the purpose of this paper, the theorem is used to apply that the

truncated series is computable by a small noncommutative ABP therefore reducing zero-testing of

recognizable series to the identity testing of noncommutative ABPs.

2.5 Matrix coefficient realization theory

The noncommutative rational functions lack a canonical form. If a noncommutative rational func-

tion is analytic (or defined) at a matrix point, then (matrix coefficient)-realization theory offers a

representation of the noncommutative rational function around that point. This is also common

in automata theory and control theory. For a detailed exposition of this theory, see the work of

Volčič [34].

Recall that, Mm(F) is the m ×m matrix algebra over F. A generalized word or a generalized

monomial in x1, . . . , xn over Mm(F) allows the matrices to interleave between variables. More

formally, a generalized word over Mm(F) is of the following form: a0xk1a2 · · · ad−1xkdad where

ai ∈ Mm(F). A generalized polynomial over Mm(F) is obtained by a finite sum of generalized

monomials in the ring Mm(F)〈
¯
x〉. Similarly, a generalized series over Mm(F) is obtained by infinite

sum of generalized monomials in the ring Mm(F)⟪
¯
x⟫.

A generalized series (resp. polynomial) S over Mm(F) admits the following canonical descrip-

tion. Let E = {ei,j , 1 6 i, j 6 m} be the set of matrix units. Express each coefficient matrix a in S

in the E basis by a F-linear combination and then expand S. Naturally each monomial of degree-d

in the expansion looks like ei0,j0xk1ei1,j1xk2 · · · eid−1,jd−1
xkdeid,jd where eil,jl ∈ E and xkl ∈ ¯

x. We

say the series S (resp. polynomial) is identically zero if and only if it is zero under such expansion

i.e. the coefficient associated with each generalized monomial in the canonical representation is

zero.

The evaluation of a generalized series over Mm(F) is defined on any k′m× k′m matrix algebra

for some integer k′ > 1 [34]. To match the dimension of the coefficient matrices with the matrix

substitution, we use an inclusion map ι : Mm(F) → Mk′m(F), for example, ι can be defined as

ι(a) = a ⊗ Ik′ or ι(a) = Ik′ ⊗ a. We now define the evaluation of a generalized series (resp.

polynomial) over Mm(F) in the following way. Any degree-d generalized word a0xk1a1 · · · ad−1xkdad
over Mm(F) on a matrix substitution (p1, . . . , pn) ∈M

n
k′m(F) evaluates to

ι(a0)pk1ι(a1) · · · ι(ad−1)pkdι(ad)

3In the language of weighted automata, the matrix M is the transition matrix for the series S.
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under some inclusion map ι : Mm(F) → Mk′m(F). In ring theory, all such inclusions are known to

be compatible by the Skolem-Noether theorem [31, Theorem 3.1.2]. Therefore, if a series S is zero

with respect to some inclusion map ι : Mm(F) → Mk′m(F), then it must be zero w.r.t. any such

inclusions. The equivalence of the two notions of zeroness follows from the proof of [34, Proposition

3.13].

We now recall the definition of a recognizable generalized series from the same paper.

Definition 18. A generalized series S in Mm(F)⟪
¯
x⟫ is recognizable if it has the following linear

representation. For some integer s, there exists a row-tuple of matrices c ∈ (Mm(F))1×s, and

b ∈ (Mm(F))s×1 and an s × s matrix M whose entries are homogeneous generalized linear forms

over x1, . . . , xn i.e.
∑n

i=1 pixiqi where each pi, qi ∈ Mm(F) such that S = c(I −M)−1
b. We say, S

has a linear representation (c,M, b) of size s over Mm(F).

In [34], Volčič shows the following result.

Theorem 19. [34, Corollary 5.1, Proposition 3.13] Given a noncommutative rational formula r

of size s over x1, . . . , xn and a matrix tuple
¯
p ∈M

n
m(F) in the domain of definition of r, r(

¯
x+

¯
p) is

a recognizable generalized series with a representation of size at most 2s over Mm(F). Additionally,

r(
¯
x) is zero in the free skew field if and only if r(

¯
x+

¯
p) is zero as a generalized series.

Proof. For the first part, see Corollary 5.1 and Remark 5.2 of [34].

To see the second part, let r(
¯
x) is zero in the free skew field. Then the fact that r(

¯
x +

¯
p) is

a zero series follows from Proposition 3.13 of [34]. If r(
¯
x) is nonzero in the free skew field, then

there exists a matrix tuple (q1, . . . , qn) ∈M
n
l (F) such that r(

¯
q) is nonzero. W.l.o.g. we can assume

l = k′m for some integer k′. Fix an inclusion map ι : Mm(F) → Mk′m(F). Define a matrix tuple

(q′1, . . . , q
′
n) ∈ M

n
k′m(F) such that q′i = qi − ι(pi). Therefore, the series r(

¯
x +

¯
p) on (q′1, . . . , q

′
n)

evaluates to r(
¯
q) under the inclusion map ι, hence nonzero [34, Remark 5.2]. Therefore, r(

¯
x+

¯
p) is

also nonzero.

Remark 20. More explicitly we can say the following which is already outlined in [34, Section 5].

For inclusion map ι : Mm(F)→Mk′m(F)

r(
¯
q + ι(

¯
p)) = ι(c)


I2sk′m −

n∑

j=1

ι(Axj )(
¯
q)




−1

ι(b).

We also note down a few basic facts. The following is easy to show and also noted in [34].

Fact 21. Let r(
¯
x+

¯
p) be a generalized series where

¯
p consists of matrices in Mm(F). If we replace

each xi by a generic matrix over noncommuting variables (yij,k)16j,k6m, then we get a nonzero

matrix over the
¯
y variables. More precisely, the map ψ(xi) = (yij,k)16j,k6m is identity preserving.

Another easy fact is the following.

Fact 22. Let r(
¯
x +

¯
p) has a linear representation c(I − M)−1

b of size s. Then each entry of

r(ψ(
¯
x) +

¯
p) is a recognizable series with transition matrix M(ψ(x1), . . . , ψ(xn)) of size sm. More

precisely, the (i, j)th entry of r(ψ(
¯
x) +

¯
p) has a representation (

¯
ci,M(ψ(

¯
x)),

¯
bj) where

¯
ci and

¯
bj are

the ith row and jth column of c and b repectively.
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3 Derandomization of RIT from the Hardness of Polynomial Iden-

tities

In this section, we present a new approach to derandomize (almost general) RIT efficiently in the

black-box setting and prove Theorem 4. Given a noncommutative polynomial P (x1, . . . , xn) ∈

F〈x1, . . . , xn〉, there is a well-known trick to reduce the identity testing of P to the identity testing

of a bivariate polynomial P ′(y0, y1) over the noncommuting variables y0, y1 by the substitution

xi ← y0y
i
1y0 for 1 6 i 6 n.

For a rational formula r(
¯
x), such a variable reduction step preserving identity is not immediate.

Our first result in this section reduces the identity testing of an n-variate rational formula of

inversion height h to the identity testing of a rational formula of inversion height h over 2(h + 1)

variables. But before that we record a simple fact.

Fact 23. Given any rational formula r
′ of of inversion height at most h− 1 and size at most s, if

we can find a matrix tuple such that r′ is invertible on that matrix tuple, then for a rational formula

r of size at most s and inversion height h, we can find a matrix tuple where r is defined.

Proof. Let F be the collection of all those inverse gates in the formula r such that for every g ∈ F ,

the path from the root to g does not contain any inverse gate. For each gi ∈ F , let hi be the

sub-formula input to gi. Consider the formula r
′ = h1h2 · · · hk (where k = |F|) which is of size at

most s since for each i and j, hi and hj are disjoint. Clearly, r
′ is of inversion height at most h− 1.

So if we find a point
¯
q such that r′(

¯
q) is invertible then r is defined at that point

¯
q.

Now we state and prove the variable reduction lemma for rational formulas.

Lemma 24. Let r(x1, . . . , xn) be a rational formula of inversion height h. Then, there exists a

2(h + 1) variate rational formula r
′ of inversion height h over the variables {yj0, yj1 : 0 6 j 6 h}

such that r is zero in F⦓
¯
x⦔ if and only if r′ is zero in F⦓

¯
y⦔. Moreover, r′ is obtained from r by

substituting xi by
∑h

j=0 yj0y
i
j1yj0 for 1 6 i 6 n.

Proof. The proof is by induction on the inversion height h. In fact we use a stronger inductive

hypothesis: For every nonzero rational formula of inversion height h, there also exists a matrix

tuple (p1, . . . , pn) and a collection of matrices {q00, . . . , qh0, q01, . . . , qh1} such that r(p1, . . . , pn) is

invertible and for each i ∈ [n], pi =
∑h

j=0 qj0q
i
j1qj0.

It is true for noncommutative polynomials for which h = 0. It is already mentioned that the

substitution xi ← y0y
i
1y0 reduces the identity testing of P (

¯
x) to the identity testing of P ′(y0, y1).

Moreover, by Theorem 11, we know that we can find matrices q0, q1 such that the bivariate poly-

nomial P ′(q0, q1) evaluates to an invertible matrix. Since P (q0q1q0, q0q
2
1q0, . . . , q0q

n
1 q0) = P ′(q0, q1),

we establish the base case of the induction.

Inductively, suppose that it is true for any formula of inversion height h − 1. Now con-

sider a nonzero rational formula r(x1, . . . , xn) of inversion height h. From the inductive hy-

pothesis and Fact 23, there exists a matrix tuple (p1, . . . , pn) and a collection of matrices

{q̃00, . . . , q̃(h−1)0, q̃01, . . . , q̃(h−1)1} such that r(p1, . . . , pn) is defined and for each i ∈ [n], pi =∑h−1
j=0 q̃j0q̃

i
j1q̃j0. Let the dimension of each pi bem. Therefore, r(

¯
x+

¯
p) is also a nonzero generalized

series by Theorem 19. Replacing each xi by y0y
i
1y0, we obtain a nonzero bivariate generalized series

and suppose it is nonzero for y0 = q̂h0 and y1 = q̂h1 of some dimension km for an integer k. Notice

from Section 2 that a generalized series is zero if and only if the coefficient of every monomial in
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the canonical representation is zero. Therefore the bivariate substitution xi → y0y
i
1y0 preserves the

nonzeroness of a generalized series. Therefore,

r(q̂h0q̂h1q̂h0 + ι(p1), . . . , q̂h0q̂h1
nq̂h0 + ι(pn))

is also nonzero. Notice that, ι(pi) =
∑h−1

j=0 ι(q̃j0)(ι(q̃j1))
iι(q̃j0) for the inclusion map ι from

Mm(F) → Mkm(F). We can now define r
′ substituting each xi in r by

∑h
j=0 yj0y

i
j1yj0. Clearly,

r
′ is nonzero. By Theorem 11, r′ is also invertible for some matrix tuple

¯
q of same dimension.

Hence r(p1, . . . , pn) is invertible for pi =
∑h

j=0 qj0q
i
j1qj0.

Next we show that if Conjecture 2 is true then any rational formula of size s and inversion

height h 6 β(log s/ log log s) for β ∈ (0, 1), is nonzero on a matrix tuple of dimension (γ log s)h+1

for some constant γ.

Lemma 25. Let r(x1, . . . , xn) be a nonzero rational formula of size s and inversion height h 6

β(log s/ log log s) for any constant 0 < β < 1. Then, Conjecture 2 implies that there is a matrix

tuple (p1, . . . , pn) ∈ M
n
m(F) such that r(p1, . . . , pn) is invertible and m = (γ log s)h+1 for some

constant γ > 1.

Proof. The proof is by induction on h. For the base case h = 0, Conjecture 2 implies that the

noncommutative formula is nonzero on generic c log s (for some constant c) dimensional matrix tuple

(Z1, . . . , Zn) where Zi = (z
(i)
ℓ,k)16ℓ,k6c log s. Also Theorem 11 says that the formula evaluates to an

invertible matrix M(Z) on substituting xi by Zi. Now using standard idea, random substitution

to the variables in Z1, . . . , Zn yields such a matrix tuple.

Inductively assume that we have already proved the dimension bound on the witness of the

invertible image for rational formulas of inversion height at most h − 1. Let the dimension of the

matrices be dh−1. Now given a rational formula r of size s and inversion height h, observe that r is

defined on some dh−1 × dh−1 matrix tuple
¯
q using Fact 23.

Then by Theorem 19, r(
¯
x +

¯
q) can be represented by a recognizable generalized series of size

at most 2s such that r(
¯
x) is nonzero if and only if r(

¯
x+

¯
q) is nonzero. Using Fact 21, apply the ψ

map on the variables such that ψ(xi) substitutes the variable xi by a matrix of fresh noncommuting

variables z
(i)
j,k for 1 6 j, k 6 dh−1.

Using Fact 22, observe that we get a matrix of recognizable series and each such recognizable

series can be represented by an automaton of size at most ŝ 6 2sdh−1. Since ψ preserves identity,

one of such recognizable series will be nonzero. So w.lo.g, let the series be S1,1 computed at (1, 1)th

entry is nonzero. Let the transition matrix for S1,1 is M1,1.Then using Theorem 17, the truncated

finite series S̃1,1 =
¯
ct
(∑

k6ŝ−1M
k
1,1

)
¯
b is nonzero, which is a noncommutative ABP.

If Conjecture 2 is true then S̃1,1 will be nonvanishing on a matrix tuple
¯
p of dimension O(log ŝ).

Now by the following simple scaling trick, we show that the infinite series S1,1 is nonzero at a matrix

tuple of dimension c log ŝ.

Claim 26. We can find a matrix tuple
¯
p′ which is a scalar multiple of

¯
p such that S1,1(

¯
p′) is

nonzero.

Proof. Let τ be a commutative variable and consider the matrix tuple,

τ
¯
p = (τp

{1}
1,1 , . . . , τp

{1}
dh−1,dh−1

, . . . , τp
{n}
1,1 , . . . , τp

{n}
dh−1,dh−1

).
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Observe that M1,1(τ
¯
p) = τM1,1(

¯
p). From the definition of the series S1,1,

S1,1(
¯
z) = S̃1,1(

¯
z) +

∑

i>ŝ
¯
ctM i

1,1¯
b.

Let d be the dimension of the matrices in the tuple
¯
p. We now evaluate S1,1 at τ

¯
p to get the

following:

S1,1(τ
¯
p) = S̃1,1(τ

¯
p) +

∑

i>ŝ

τ i ·
(
(
¯
c⊗ Id)

t ·M i
1,1(

¯
p) · (

¯
b⊗ Id)

)
.

Since S̃1,1(
¯
p) 6= 0, we have that S1,1(τ

¯
p) evaluates to a nonzero matrix whose entries are power

series in the variable τ .

It is also true that S1,1(τ
¯
p) = (

¯
c⊗ Id)

t · (I −M1,1(τ
¯
p))−1 · (

¯
b⊗ Id) which is rational expression

in τ where the degrees of the numerator and denominator polynomials are bounded by poly(ŝ, d).

Hence we need to avoid only poly(ŝ, d) values for τ such that S1,1(τ
¯
p) is defined and nonzero.

The above argument shows that for a specific value τ0 for the parameter τ , the generalized

series r(
¯
x+

¯
q) evaluates to nonzero on a matrix tuple (N1(τ0)+ ι(q1), . . . , Nn(τ0)+ ι(qn)) where Ni

is obtained from the matrix (z
(i)
j,k)16j,k6dh−1

by substituting the variables (z
(i)
j,k)16j,k6dh−1

by τ0p
(i)
j,k.

Also ι is the inclusion map ι : Mdh−1
(F)→Mddh−1

(F) defined as ι(qi) = qi ⊗ Id.

Hence r is nonzero on generic matrix tuples of dimension dh = ddh−1 6 cdh−1 log(sdh−1).

Inductively assume that dh−1 6 (2c log s)h. Since h 6 β(log s/ log log s), we can observe that

s > dh−1. Using this we get that dh 6 c(2c log s)h log(s2) and that yields dh 6 (2c log s)h+1. We

take γ = 2c.

Therefore by Theorem 11 r(
¯
x) evaluates to an invertible matrix on substituting xi by generic

matrices of dimension (γ log s)h+1.

Now we are ready to show that if Conjecture 2 is true, then we can find a subexponential-size

hitting set for rational formulas of size s and inversion height up to c′(log s/ log log s) for a suitable

constant c′ that depends on the exponent of the subexponential function.

Proof of Theorem 4. Let r(x1, . . . , xn) be a rational formula of inversion height h and size s.

Consider, r′(y00, y01, . . . , yh0, yh1) obtained from r by substituting xi by
∑h

j=0 yj0y
i
j1yj0 for 1 6 i 6

n. From Lemma 24, we know that r(
¯
x) is nonzero if and only if r′(

¯
y) is nonzero. Moreover, r′ has a

rational formula of size at most s′ which is of O(snh). Therefore, r′ must be invertible on dh × dh
generic matrix substitution where dh 6 (γ log s′)h+1 from Lemma 25. Using Proposition 10, we

know that r′ has a linear pencil L′ of size at most 2s′. W.l.o.g, assume that r′ is computed at the

(1, 1)th entry of L′−1.

Hence, if we substitute the variables y00, y01, . . . , y0h, y1h by dh × dh generic matrices

{Z(i,0), Z(i,1) : 0 6 i 6 h)} (over commuting variables), the (1, 1)th block of L′−1(
¯
Z) will be of

form
M ′(

¯
Z)

det(L′(
¯
Z)) where det(L′(

¯
Z)) is a polynomial of degree at most 2s′(γ log s′)h+1. Further, each

entry of the matrix M ′ is a cofactor of L′(
¯
Z) and therefore it is a polynomial over the

¯
Z variables

of degree at most 2s′(γ log s′)h+1. This shows that det(M ′(
¯
Z)) is a nonzero polynomial of degree

at most 2s′(γ log s′)2h+2.

The sparsity of det(L′(
¯
Z)) and det(M ′(

¯
Z)) are bounded by κ = (s′(γ log s)2h+2)O(h(γ log s)2h+2).

Now we can use standard sparse polynomial hitting set for κ-sparse polynomials to hit both the

polynomials [27]. This gives us a strong hitting set H′ for r′.
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Consequently, we get a strong hitting set of same size for r by using the substitutions of xi
variables by the y00, y01, . . . , y0h, y1h described in Lemma 24. More formally, we define

Hn,h,s = {(p1, . . . , pn) :
¯
q ∈ H′; pi =

h∑

j=0

qj0q
i
j1qj0}.

An immediate corollary is the following.

Corollary 27. The hitting set size and the construction time is s(log s)
O(1)

for h = O(1). If we

want to maintain a subexponential-size hitting set of size 2s
δ
for δ ∈ (0, 1), then h can be taken to

be at most cδ

(
log s

log log s

)
where cδ is a constant depending on δ.

4 Computing the Matrix Rank over the Free Skew Field

In this section, we give an efficient algorithm to compute the rank of any matrix over the free

skew field whose entries are noncommutative polynomials or rational functions with small linear

pencils. Additionally we output a matrix tuple on which the rank is achieved. This is done in two

steps. Firstly in Section 4.1, we introduce a blow-up definition for matrix rank over the free skew

field extending the results for linear pencils. Next, we show an efficient reduction from the rank

computation over the free skew field to the linear case in Section 4.2. The blow-up definition is

used to compute the matrix tuple as the witness of the noncommutative rank for such matrices.

4.1 On Blow-up Rank of Matrices over the free skew field

We consider a blow-up definition of noncommutative rank for matrices, denoted ncrank∗, over the

free skew field. This notion was introduced for linear matrices [13, 24], and for any linear matrix

M it coincides with ncrank(M), the inner rank of M [24]. In this section we show that ncrank∗

coincides with the inner rank (ncrank) for matrices over the free skew field. We focus on square

matrices.

Given a matrix M = (gi,j)16i,j6m over F⦓x1, . . . , xn⦔ and d ∈ N, let

M{d} = {M(p1, . . . , pn) | (p1, . . . , pn) ∈M
n
d(F)}.

Define rank(M{d}) = max(p1,...,pn){rank(M(p1, . . . , pn))}. We show that rank(M{d}) is always a

multiple of d (Lemma 30). Moreover, this maximum is achieved for the generic matrix of dimension

d× d as shown in Claim 29.

Definition 28. The blow-up rank of the matrix M is defined as

ncrank∗(M) = lim
d→∞

rank(M{d})

d
.

We first show the existence of this limit and then argue that ncrank∗(M) = ncrank(M).

Claim 29. For any m×m matrix M = (gij) over F⦓x1, . . . , xn⦔, and for each d ∈ N, the maximum

rank of the image of M for substitutions from M
n
d (F) is the rank of M on d× d generic matrices.
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Proof. Let
¯
p in M

n
d (F) be the matrix substitution such that rank(M(

¯
p)) = r is maximum. Let

rank(M(
¯
T )) = r∗,

where
¯
T = (T1, . . . , Tn) is an n-tuple of d× d generic matrices. More precisely, Tk =

(
t
(k)
i,j

)
16i,j6d

and 1 6 k 6 n.

Observe that there is a r × r submatrix of M(
¯
p) with nonzero determinant. Hence, the de-

terminant of the corresponding submatrix in M(
¯
T ) is a nonzero polynomial over t

(k)
ij variables.

Therefore, r∗ > r.

Conversely, there is an r∗ × r∗ submatrix of M(
¯
T ) whose determinant is nonzero. This de-

terminant is a nonzero polynomial in the t
(k)
i,j variables. Hence, there is a scalar substitution

¯
p in

M
n
d (F) for these variables such that the determinant remains nonzero. Clearly, M(

¯
p) is of rank r∗.

Therefore, r > r∗.

Next, we observe that the regularity lemma [24], originally shown for linear matrices, extends

to all matrices over the free skew field.

Lemma 30 (A generalization of regularity lemma). For any m×m matrix M = (gij)16i,j6m over

F⦓x1, . . . , xn⦔ there is a positive integer d0 such that the maximum rank of the image of M on

d× d matrix algebra for all d > d0 is always a multiple of d.

Proof. The proof is straightforward adaptation of the proof for the linear case as presented in

Makam’s thesis [29, Chapter 4]. Let d0 be the minimum positive integer such that any nonzero

element gij is not identically zero on Md(F) for d > d0. By Amitsur’s theorem (Theorem 11) the

images of the rational expressions gij are in the universal division algebra U(d). Let
¯
T be a tuple

of generic matrices of dimension d× d. Then by row and column operations in U(d) it is possible

to transform the matrix M(
¯
T ) into the following form:




Id
Id

. . .

0


 .

If there are exactly r blocks of Id in the above matrix then clearly its rank is rd.

Claim 31. For any m × m matrix M over F⦓
¯
x⦔ there is a d0 ∈ N such that for d > d0 if

¯
T = (T1, . . . , Tn) is a tuple of generic matrices of size d and

¯
T ′ = (T ′

1, . . . , T
′
n) is a tuple of generic

matrices of size d+ 1, then we have that

rank(M(T ′
1, . . . , T

′
n)) > rank(M(T1, . . . , Tn)).

Proof. We prove it by induction on m. Let d0 be the minimum integer more than m such that any

nonzero entry in M is not an identity for the matrix algebra Md0(F). The case m = 1 follows from

Amitsur’s theorem on universal division algebra (Theorem 11) as the image must be invertible. For

the induction, suppose aij is a nonzero entry of M (it must have a nonzero entry). By row and

column permutations we can rewrite M as:

M =

(
aij bi
cj M ′

)
,
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where M ′ is an (m− 1)× (m− 1) submatrix of M .

Let M ′′ =M ′ − cja
−1
ij bi ∈Mm−1(F⦓

¯
x⦔). By some row and column operations we obtain

M = U

(
aij 0

0 M ′′

)
V,

for invertible matrices U and V over F⦓
¯
x⦔. Therefore, for any matrix substitution

¯
p,

rank(M(
¯
p)) = rank(aij(

¯
p)) + rank(M ′′(

¯
p)).

By the induction hypothesis, rank(M ′′(
¯
T ′)) > rank(M ′′(

¯
T )). Again by Amitsur’s theorem,

rank(aij(
¯
T ′)) > rank(aij(

¯
T )). Now the claim follows.

Notice that, rank(M{d}) = rank(M(
¯
T )) and rank(M{d+1}) = rank(M(

¯
T ′)). Therefore,

rd+1(d+ 1) > rdd > (rd − 1)(d + 1).

The second inequality follows from the assumption that d is more than m. Hence, rd+1 > rd. The

sequence {rd} is then weakly increasing and bounded. Therefore the limit exists.

It follows that for any matrix M over F⦓x1, . . . , xm⦔ we have

ncrank∗(M) = lim
d→∞

rank(M{d})

d
= max

d

rank(M{d})

d
.

Lemma 32. For any m×m matrix M over the free skew field F⦓x1, . . . , xn⦔ we have ncrank(M) =

ncrank∗(M).

Proof. Let ncrank(M) = r. Then there is anm×r matrix A and r×mmatrix B over F⦓x1, . . . , xn⦔

such that M = A ·B. For any matrix substitution (p1, . . . , pn) of dimension d× d,

M(p1, . . . , pn) = A(p1, . . . , pn) ·B(p1, . . . , pn).

Hence, rank(M(p1, . . . , pn)) 6 min{rank(A(p1, . . . , pn)), rank(B(p1, . . . , pn))} 6 rd.

Therefore, ncrank∗(M) 6 r.

For the other direction, again let ncrank(M) = r. We need to show that for some d0 ∈ N and

all d > d0, for the d× d generic matrix substitution (T1, T2 . . . , Tn) we have rank(M(T1, . . . , Tn)) is

at least rd.

Claim 33. For each r′ 6 r there is an r′ × r′ submatrix Mr′ of M such that Mr′(T1, . . . , Tn) is

invertible.

Proof of Claim. We will prove it by induction on r′. For r′ = 1 we can choose any nonzero entry

gi,j of the matrix M . For sufficiently large d the matrix gi,j(T1, . . . , Tn) is invertible by Amitsur’s

theorem (Theorem 11).

By induction hypothesis, let r′ = r− 1 and suppose there is an r′× r′ submatrixMr′ of M such

that Mr′(T1, . . . , Tn) is invertible. Permuting rows and columns suitably we may assume Mr′ is the

top left submatrix indexed by {1, 2, . . . , r′}. Without loss of generality, we can write:

M =

(
Mr′ A

B C

)
.

18



Let C ′ = C − BM−1
r′ A where M−1

r′ is the inverse of Mr′ over F⦓x1, . . . , xn⦔. Then there are

invertible matrices U, V corresponding to row and column operations such that

M = U

(
Mr′ 0

0 C ′

)
V.

Observe that, r = ncrank(M) = ncrank(Mr′) + ncrank(C ′) = r′ + ncrank(C ′). Hence,

ncrank(C ′) > 0. Let c′ij be a nonzero element of C ′. Define the matrix Mr of dimension r × r:

Mr =

(
Mr′ aj
bi ci,j

)
,

where bi is i
th row of B and aj is j

th column of A. As c′ij = cij − biMr′
−1aj 6= 0 and d is sufficiently

large, by Amitsur’s theorem (Theorem 11) it follows that c′ij(T1, T2, . . . , Tn) is invertible. Hence

Mr(T1, T2, . . . , Tn) is invertible which proves the claim.

Claim 33, shows that there is a submatrix Mr of M such that the rank of Mr(T1, . . . , Tn) is

rd. Hence ncrank∗(M) > r. Putting it together we have shown ncrank∗(M) = ncrank(M) which

completes the proof.

4.2 The Rank Computation

In this section, we prove Theorem 5. The idea is to reduce the computation of noncommutative

rank of a matrix with skew field entries to noncommutative rank computation of a linear matrix

incurring a small blow-up in the size. To show the reduction, we need the following lemma.

Lemma 34. Let P ∈ F⦓
¯
x⦔m×m such that,

P =

[
A B

C D

]
,

where A ∈ F⦓
¯
x⦔r×r is invertible. Then,

ncrank(P ) = r + ncrank(D − CA−1B),

Proof. If Q is an n× n invertible matrix over F⦓
¯
x⦔ then

ncrank(QP ) = ncrank(PQ) = ncrank(P ).

For if P =MN then QP = (QM)N and if QP =MN then P = (Q−1M)N . Similarly for PQ.

The matrix [
A−1 0

0 Im−r

]

is full rank. Similarly, the matrix [
Ir 0

−C Im−r

]

is full rank because [
Ir 0

−C Im−r

] [
Ir 0

C Im−r

]
=

[
Ir 0

0 Im−r

]
.

19



Hence, ncrank(P ) equals ncrank(R) where

R =

[
Ir 0

−C Im−r

]
·

[
A−1 0

0 Im−r

]
·

[
A B

C D

]
=

[
Ir A−1B

0 D − CA−1B

]

Post-multiplying by the invertible matrix

[
Ir −A

−1B

0 Im−r

]
we obtain

[
Ir 0

0 D − CA−1B

]
.

It is easy to see that its inner rank is r + ncrank(D − CA−1B).

In the following lemma, we relate the noncommutative rank of a matrix with skew field entries

with small linear pencils to the noncommutative rank of a linear matrix.

Lemma 35. Let M ∈ F⦓
¯
x⦔m×m be a matrix where each (i, j)th entry gij is computed as the (1, 1)th

entry of the inverse of a linear pencil Lij of size at most s. Then, one can construct a linear pencil

L of size m2s+m such that,

ncrank(L) = m2s+ ncrank(M).

Proof. We first describe the construction of the linear pencil L and then argue the correctness.

W.l.o.g. we may assume that each linear matrix Lij is s × s (by padding it, if required, with an

identity matrix of suitable size).

Let L =




L11 0 · · · 0 B11

0 L12 · · · 0 B12
...

...
. . .

...
...

0 0 · · · Lmm Bmm

−C11 −C12 · · · −Cmm 0



, (3)

where each Cij is an m × s and Bij is an s ×m rectangular matrix defined below. Let ei denote

the column vector with 1 in the ith entry and the remaining entries are zero. We define

Cij =



ei 0 · · · 0




and, Bij =




eTj
0
...

0


 .

To argue the correctness of the construction, we write L as a 2 × 2 block matrix. As each Lij is

invertible (otherwise gij would not be defined), the top-left block entry is invertible. Therefore, we

can find two invertible matrices U, V implementing the required row and column operations such

that,

L = U




L11 0 · · · 0 0

0 L12 · · · 0 0
...

...
. . .

...
...

0 0 · · · Lmm 0

0 0 · · · 0 D̃



V,

for some m×m matrix D̃.
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Claim 36. The matrix D̃ is exactly the input matrix M .

Proof of Claim. From the 2× 2 block decomposition we can write,

D̃ = [C11C12 · · ·Cmm]




L−1
11 0 · · · 0

0 L−1
12 · · · 0

...
...

. . .
...

0 0 · · · L−1
mm







B11

B12
...

Bmm


 =

∑

i,j

CijL
−1
ij Bij .

Observe that, for each i, j, CijL
−1
ij Bij is anm×m matrix with gij as the (i, j)

th entry and remaining

entries are 0. Hence, D̃ =M .

Notice that the top-left block of L in Equation 3 is invertible as for each i, j ∈ [m], Lij is

invertible. Now the proof follows from Lemma 34.

Proof of Theorem 5. For any matrix M = (gi,j)m×m such that for each i, j ∈ [m], gij in

F⦓x1, . . . , xn⦔ has a linear pencil of size at most s, construct a linear matrix L of size m2s +m

from the previous lemma. We can now compute the noncommutative rank of L using the algorithm

of [24] in deterministic poly(s,m, n)-time. Let the rank be r. We now output r −m2s to be the

noncommutative rank of M . The correctness of the algorithm follows from Lemma 35.

By the equivalence of the inner rank and blow-up rank established in Section 4.1, we know that

ncrank∗ (M) = r −m2s. Now we use the algorithm in [24] to compute a matrix tuple
¯
p ∈ Md(F)

such that the rank of L(
¯
p) = rd for some d = O(m2s). Clearly rank(M(

¯
p)) = (r−m2s)d. Therefore,

the matrix tuple
¯
p is also a witness of the rank of M .

5 Efficient Linear Pencils for Inversely Disjoint r-Skewed Circuits

We now prove that an inversely disjoint rational r-skewed circuit of size s has a linear pencil

representation of size O(s2). We first prove a more general result, a composition lemma for linear

pencils which implies Theorem 8.

Lemma 37. Let L be an s× s linear pencil over x1, . . . , xn and y1, . . . , ym. Let fi,j = (L−1)i,j for

i, j ∈ [s]. Let g1, . . . , gm be rational functions over x1, . . . , xn such that each gk has a linear pencil

Lk of size at most sk. Then we can construct a single linear pencil L̃ of size
∑m

i=1 si +m+2s2 + s

in poly(s1, . . . , sm, s,m, n)-time such that

(L̃−1)2s2+ŝ+i,2s2+ŝ+j = fi,j(
¯
x, g−1

1 , . . . , g−1
m ) for i, j ∈ [s], where ŝ =

m∑

i=1

si +m.

Proof. For each i, j ∈ [s], fi,j = (L−1(
¯
x, y1, . . . , ym))(i,j) and define hi,j = fi,j(

¯
x, g−1

1 , . . . , g−1
m ). As

the variables y1, . . . , ym are indeterminates, we can rewrite each hi,j as the following:

hi,j = (L−1(
¯
x, g−1

1 , . . . , g−1
m ))(i,j).

We first describe the construction of the linear pencil L̃ and then prove the correctness of the

construction. Let L̂ be a linear pencil over x1, . . . , xn of size ŝ where for each k ∈ [m], there exists

ik, jk ∈ [ŝ] such that g−1
k = (L̂−1)ik,jk . The description of L̂ is given later.
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Let us first define two s × s linear pencils L′ and L′′ as follows. Fix i, j ∈ [s]. Let (L)i,j =

α0 +
∑n

k=1 αk,i,jxk +
∑m

k=1 βk,i,jyk . Write L = L′ + L′′ such that (L′)i,j = α0 +
∑n

i=k αk,i,jxk and

(L′′)i,j =
∑m

k=1 βk,i,jyk. We now define L̃ as a 4× 4 block linear matrix of size ŝ+ 2s2 + s,

L̃ =




Is2 A1 0 0

0 L̂ A2 0

0 0 Is2 A3

A4 0 0 L′


 , (4)

where Is2 is the identity matrix of size s2 and A1, A2, A3 and A4 are some rectangular matrices

of dimension s2× ŝ, ŝ×s2, s2×s and s×s2 respectively. We now define the construction A1, A2, A3

and A4. Subsequently in this proof I is used for Is2 .

Let L̃1 =

[
I A1

0 L̂

]
. Then L̃−1

1 =

[
I −A1L̂

−1

0 L̂−1

]
.

We now consider the top-left 3× 3 block matrix.

Let L̃2 =



I A1 0

0 L̂ A2

0 0 I


 . Then L̃−1

2 =

[
L̃−1
1 B1

0 I

]
,

where B1 = −

[
I A1

0 L̂

]−1

·

[
0

A2

]
=

[
A1L̂

−1A2

−L̂−1A2

]
.

Define the s2 × s2 matrix A1L̂
−1A2 = B2. Recall that, (L

′′)i,j =
∑m

k=1 βk,i,jyk. We index the rows

of A1 and columns of A2 as a pair (i, j) for some i, j ∈ [s]. Define for each (i, j) ∈ [s] × [s] and

k ∈ [m], (A1)(i,j),ik = βk,i,j, (A2)jk,(i,j) = 1 and the other entries are zero. Then,

(B2)(i,j),(i,j) =
∑

ik,jk

(A1)(i,j),ik(L̂
−1)ik,jk(A2)jk,(i,j) =

m∑

k=1

βk,i,jg
−1
k .

We now define, for each i, j ∈ [s], (A4)i,(i,j) = −1 and 0 otherwise and (A3)(i,j),j = 1 and 0

otherwise. Since

L̃ =




I A1 0 0

0 L̂ A2 0

0 0 I A3

A4 0 0 L′


 , (5)

Now, L̃−1 =

[
∗ ∗

∗ B3

]
where, B3 =


L′ −

(
A4 0 0

)
L̃−1
2




0

0

A3





−1

.

Simplifying further,

B3 = (L′ −A4B2A3)
−1 = L−1(

¯
x, g−1

1 , . . . , g−1
k ).

Therefore, for each i, j ∈ [s], (B3)i,j = (L−1(
¯
x, g−1

1 , . . . , g−1
k ))i,j = hi,j.

Now we construct the linear pencil L̂ of size ŝ =
∑m

k=1 sk +m.
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For k ∈ [m], let there are indices i′k, j
′
k ∈ [sk] such that gk = (L−1

k )i′
k
,j′
k
. We now define for each

k ∈ [m],

L̃k :=

[
Lk ej′

k

−eT
i′
k

0

]
.

Here the vectors ei are the unit vector. The construction of L̂ is now as follows:

L̂ =




L̃1 0 . . . 0

0 L̃2 . . . 0
...

...
. . .

...

0 0 . . . L̃m



. (6)

Considering the L̂−1 as an m ×m block matrix where the ith block is of size si + 1, it is easy

to see that for each k ∈ [m], the bottom-right corner entry of the kth block of L̂−1 is g−1
k . To see

this apply Equation 1 with p4 = 0.

Now the proof of Theorem 8 follows easily from Lemma 37.

Proof of Theorem 8. We show that inversely disjoint r-skewed rational functions of height h

and of size s have linear pencils of size at most cs2 for some constant c. We prove it by induction

on the inversion height h. For the base case h = 0, the input circuit is a noncommutative ABP and

the theorem holds by Proposition 14.

Let f(
¯
x, g−1

1 , . . . , g−1
m ) be an input inversely disjoint r-skewed rational function of height h

computed by the circuit C ′. Replacing g−1
i by new variable yi we get a noncommutative ABP

C ′(
¯
x,
¯
y) of size s′ 6 s. Again by Proposition 14, C ′ can be represented by a linear pencil of size at

most 2s′. Let g1, . . . , gm are computed by inversely disjoint r-skewed circuits of size s1, . . . , sm and

inversion heights 6 h− 1. By the inductive hypothesis each gk is computable by a linear pencil of

size at most cs2k.

Hence by Lemma 37, there is a linear pencil of size S representing C ′(
¯
x, g−1

1 , . . . , g−1
m ) which

satisfies the following condition.

S 6 c
m∑

k=1

s2k +m+ 8s′2 + 2s′.

Simplifying further,

S 6 c

(
m∑

k=1

s2k +m+ s′2

)
,

for sufficiently large c. Since the sub-circuits for g1, . . . , gm are disjoint, we get that (
∑m

k=1 s
2
k +

m+ s′2) 6 (
∑m

k=1 sk +m+ s′)2 6 s2. So, S 6 cs2 for some large constant c.

We now prove the following property of the linear pencil constructed in Theorem 8.

Proposition 38. For any inversely disjoint rational r-skewed circuit computing r ∈ F⦓
¯
x⦔ and a

tuple of matrix
¯
p ∈M

n
m(F) for some finite m, the following are equivalent.

1. r is defined at
¯
p.
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2. For every gate u which is an output gate or a child of an inverse gate, the pencil constructed

in Theorem 8 corresponding to the rational expression computed at u is invertible at
¯
p.

Proof. We first prove that (1) =⇒ (2) by induction on inversion height h of r. For h = 0, the

rational expression r is a polynomial f computed by a noncommutative r-skewed circuit (ABP).

Note that f is defined everywhere and the linear pencil L constructed in Proposition 14 is invertible

everywhere.

Let r is of inversion height h. Write r = f(
¯
x, g−1

1 , . . . , g−1
m ) and thinking the place holder

variables for g−1
1 , . . . , g−1

m as y1, . . . , ym we get f(
¯
x, y1, . . . , ym) which is a noncommutative ABP

over over
¯
x, y1, . . . , ym. The rational functions g−1

1 , . . . , g−1
m are of inversion height 6 h − 1 (some

gi is of inversion height h− 1 since r is of inversion height h).

Let u1, . . . , um be the set of nodes in the circuit of r such that each uk is a child of an inverse gate

computing gk. Let L be the linear pencil corresponding to f(
¯
x,
¯
y) from Proposition 14. For some

¯
p,

let r(
¯
p) is defined. Therefore, each g−1

k is also invertible at
¯
p. From the inductive hypothesis, linear

pencil Lk (which is constructed by applying Theorem 8) corresponding to gk is also invertible at
¯
p.

Consider the construction of L̂ from Equation 6. It is easy to see from the construction that L̂ is

also invertible at
¯
p.

Let L̃ be the linear pencil representation obtained for r. We now consider the Equation 5

described in Lemma 37. We can conclude that L̃ is invertible at
¯
p if and only if the bottom-right

corner block of the inverse, B3 is defined at
¯
p i.e. L(

¯
x, g−1

1 , . . . , g−1
m ) is invertible at

¯
p. Define

gi(
¯
p) = p′i, and

¯
q = (

¯
p, p′1, . . . , p

′
m). Clearly, f(

¯
q) = r(

¯
p). Since L is a linear pencil for f , it is

invertible everywhere. In particular, L(
¯
x, g−1

1 , . . . , g−1
m ) is invertible at

¯
p and hence, L̃ is invertible

at
¯
p.

The other direction follows closely from the proof of [22, Proposition 7.1]. We briefly discuss it

for completeness. If r is not defined at
¯
p then there exists a gate computing some rational function

g−1 in the circuit for r such that g(
¯
p) is defined but not invertible. So by the induction hypothesis,

the linear pencil Lg (constructed from Theorem 8) representing g (at the entry (ℓ1, ℓ2)) is invertible

at
¯
p. Now consider the linear pencil L̃g for g−1. From the decomposition, we observe the following.

L̃g =

(
I 0

−eTℓ1L
−1
g I

)(
I 0

0 eTℓ1L
−1
g eℓ2

)(
Lg eℓ2
0 I

)
.

If L̃g(
¯
p) is invertible, then g(

¯
p) = eTℓ1L

−1
g eℓ2 is also invertible. Hence L̃g(

¯
p) is not invertible.

Proof of Corollary 9. Let r(
¯
x, g−1

1 , . . . , g−1
m ) be the input inversely disjoint r-skewed circuit of

size s. By Theorem 8, we construct a linear pencil L̃ of size O(s2) for r−1. Now by Proposition 38,

r
−1 is defined at

¯
p if and only if L̃(

¯
p) is invertible. But r is nonzero if and only if r−1 is defined [1].

So for nonzero testing of r, it is enough to apply the singularity testing algorithms in [24] on the

linear pencil L̃ in white-box case. For the black-box case one can use the algorithm in [13]. In

fact the result in [24] also gives the dimension upper bound of O(s2) for the tensoring matrices on

which L̃ should be tested for singularity. This also leads to randomized polynomial-time black-box

algorithm that simply substitutes the variables randomly from matrices of dimension O(s2) over

sufficiently large fields.

6 Future Directions

Our work raises the following questions for further research:
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• The most important question is to obtain an unconditional derandomization of the black-

box RIT problem. The current best known result is a quasipolynomial-time black-box RIT

algorithm for rational formulas of inversion height at most two [2].

• Theorem 4 opens up a new motivation to further study the Conjecture 2. In [4], it is shown

that a nonzero noncommutative polynomial of sparsity s can not be an identity for some

k = O(log s) dimensional matrix algebra. This solves a special case of the conjecture and the

proof uses automata theoretic ideas very crucially. Can we improve these techniques to settle

the conjecture completely?

• The effective use of Higman’s trick has found new applications in randomized polynomial-

time factorization algorithm for noncommutative formulas [3]. The proof of Theorem 5 does

not use Higman’s trick. It would be interesting to see whether such ideas can be applied

elsewhere.

• Can we exactly characterize (up to a polynomial-size equivalence) the expressive power

of linear pencil representations for some sub-class of rational circuits? In this paper, we

show that inversely disjoint r-skewed circuits have polynomial-size linear pencils. This gives

ID-R-rSC ⊆ LR. It would be very interesting to prove that rational r-skewed circuits can be

expressed by polynomial-size linear pencils. In other words, prove that R-rSC = LR.
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[33] Sébastien Tavenas, Nutan Limaye, and Srikanth Srinivasan. Set-multilinear and non-

commutative formula lower bounds for iterated matrix multiplication. In Stefano Leonardi

and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on The-

ory of Computing, Rome, Italy, June 20 - 24, 2022, pages 416–425. ACM, 2022. URL:

https://doi.org/10.1145/3519935.3520044.
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